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Preface

This book is intended for final-year undergraduate and postgraduate computing 
students specializing in the field of software engineering. The text concentrates 
on the challenges that high integrity software development poses, and how formal
methods can help meet these challenges.

Formal methods have long been advocated for the development of high integrity
software. However, these methods are often perceived as being difficult to learn and
apply. In particular, the step from formal specification to code is often left uncovered
in text books. Without this, however, it is the authors’ experience that students tend
to view such methods as purely academic tasks, divorced from the realities of the soft-
ware development process. So, as well as providing a thorough introduction to the use
of a formal method, we motivate the student by demonstrating the development of
programs from formal specifications.

When formal program development is covered in many other text books, it tends to
be in the context of proof obligations. We have found that students have greatest dif-
ficulty with this area – and in addition it is hard, in a text book, to demonstrate the
complete formal development of a working application. In recent years, however, a
lightweight approach to formal methods has been put forward. This approach places
far less emphasis on the discharge of proof obligations and instead advocates the use
of run-time assertions to ensure the integrity of final code. It is the lightweight
approach we adopt in this book.

The formal method we have chosen is VDM (the Vienna Development Method).
This is one of the most mature and widely used formal methods, with an internation-
ally recognized standard. The implementation language we have chosen is Java – one
of the most common programming languages taught at universities. While we assume
no previous knowledge of VDM, we do assume that the reader is familiar with the
basics of programming in Java. The UML notation is also used to informally specify
classes. Most readers should be familiar with this notation, but a brief overview is 
provided.

The book is organized into 14 chapters. The last two of these constitute an extended
case study and need not necessarily form part of any taught course. The remaining 
12 chapters make the text highly suitable for a 12-week (one semester) course.
Tutorial questions are provided at the end of each chapter and examples are used
extensively throughout.

The book is organized so that, after the introductory chapters on high integrity soft-
ware and logic (Chapters 1 and 2), a chapter is dedicated to an aspect of VDM-SL and
the following chapter to the subsequent Java implementation. Instructors might pre-
fer to present the entire material on VDM-SL first (Chapters 3, 5, 7, 9 and 11), fol-
lowed by the material on Java implementation (Chapters 4, 6, 8, 10 and 12).

All the Java classes discussed in the text, plus additional supporting material for tutors,
are available on the accompanying website (see http://www.palgrave.com/resources).

xi



There is also an appendix on the website that describes some of the more advanced
aspects of the Java programming language that we have utilized in the text.

We would like to thank Dave Hatter, our publisher, and John Fitzgerald for his
insightful and helpful comments on the text. We would also like to thank our friends
and families for their patience and support, and the students of the University of 
East London for their comments and feedback.
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CHAPTER 1
High Integrity Software
Development

1

1.1 Introduction
Today, software is pervasive. It is used not only to provide applications on our desktop
PC, or distributed business applications across a network of machines, but also to 
control many systems all around us. Often the software is integrated into a mechani-
cal or electronic system. The growth in such embedded software, as it is known, 
is one of the reasons for the huge rise in the demand for software in recent years.

Ideally all software products, be they traditional off-the-shelf desktop products
such as word processors, or specialist embedded software dedicated to monitoring
temperatures in a chemical reactor, should be released without errors. In reality this
is not feasible and residual errors in applications are to be expected. For example,
when it comes to off-the-shelf software products, it is common for software compa-
nies developing such products to release ‘patches’ for them. Essentially, these patches
are fixes for mistakes in the application’s original source code. Manufacturers of oper-
ating systems, for example, often find the need to release patches for their products
soon after release, as errors are uncovered. Consumers tolerate a certain level of
residual errors in such applications, as the consequence of software failure is not dis-
astrous. Sometimes a system reboot may solve the problem; other times the product
might not be usable until a patch is available. While this may be annoying it does 
not pose any danger. For these kinds of products, delivering the product quickly to
market, and at an affordable price, is more important than reducing defects to an
absolute minimum.

Think of the alarm that would be raised, however, if similar patches were suddenly
released for software controlling the brakes on your car or the signalling system on 
a railway network! For these kinds of systems (compared to off-the-shelf desktop
applications) the costs of software failure are dangerously high and therefore a much
higher degree of confidence in the correctness of the software is required.

1.2 High Integrity Software
We refer to software that has a higher than normal expectation of correctness as high
integrity software. This expectation of correctness is closely linked to the risks inher-
ent in software failure. As risks increase so too does the need to ensure that there are as
few software errors as possible. However, the resources (cost, time and so on) required
to help ensure correctness also rise. Therefore, the development of high integrity soft-
ware demands greater resources than the development of a ‘regular’ software product.



A concept closely related to that of high integrity software is that of critical 
software. The term critical software applies to software that poses dangers should it
fail. Critical software can further be categorized depending upon the types of danger
imposed by failure. For example, failure of business critical software could
adversely affect the economic success of an enterprise; examples include the software
used to control a bank’s ATM transactions and software aimed at providing security
for sensitive information. Failure in mission critical software, on the other hand,
could impair the goal of the given mission. Examples here include such applications
as satellite and rocket launch systems. Finally, failure of safety critical software
could result in harm to people, property or the environment. Examples include 
medical control software and air traffic control software.

There can be degrees of danger posed by software failure, so that some software is
of higher integrity than other software; that is, a higher degree of confidence is
required in its correctness than is the case for other software. For example, consider
the software used to monitor air traffic flow around an airport and software used to
monitor the temperature in a fridge freezer. Although both are examples of critical
software, failure in the former could have far more catastrophic consequences than
failure in the latter. Amongst other things, software failure in a fridge freezer is likely
to be protected against by some form of hardware lock, whereas hardware locks can-
not protect against errors in air traffic software. We refer to these degrees of integrity
as integrity levels.

Often, a legal framework or an industry standard stipulates what is to be considered
as a dangerously high level of failure. Industry-specific standards may also stipulate
how many integrity levels are to be considered and which bands of failure are associ-
ated with each integrity level. The higher the integrity level of the software, the
greater the resources that can be justified in reducing software errors.

Since the failure of high integrity, critical software can lead to such high costs 
(be they financial or physical) it is not surprising that such failures receive much more
media attention than failures of other types of software. Table 1.1 describes some high
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Table 1.1 Some high profile examples of high integrity software failures

The loss of NASA’s Mars The Mars Climate Orbitor was lost because of a type mismatch
Climate Orbitor in November error in the software. The assumption was that metric
1999. measurements would be used but the software was developed to

use imperial measurements. This resulted in the Orbitor attempting
to orbit Mars at an altitude of just 37 miles instead of the planned
93 miles. It was believed the minimum altitude at which the orbitor
could survive would have been 53 miles.

The crash of the European An error in the specification, design and testing procedures of the
space agencies’ Ariane5 rocket fault protection software incorrectly shut down two processors
in July 1996. within the first minute of launch. This resulted in the crash of the

rocket which took 10 years and 7 billion dollars to develop.

Radiation overdoses Software errors that could have resulted in radiation overdose were
administered by the Therac-25 undetected for a long period due to the presence of hardware
machine in the USA during locks. Eventually it was decided, for safety reasons, to replace
the 1980s. these hardware locks with software locks. These software locks

failed to detect the error in the original software resulting in the
radiation overdose and death of several patients.



profile examples of such failures. More examples can be found at the RISK forum 
website (http://catless.ncl.ac.uk/Risks).

As the demands placed upon computer systems have grown over the years (owing
to advances in microchip technology, the growth of the internet and so on) so too has
the complexity of the software associated with such systems. During this time, several
software development methods (such as structured development, object-oriented
development and rapid application development) and associated modelling tools
(such as Jackson Structured Design and the Unified Modelling Language) have
evolved to deal with this issue of complexity. While these advances in methodologies
and tools have helped to deal with the issue of software complexity, all these
approaches share common weaknesses that make them less than ideal, on their own,
for the development of high integrity software. The weaknesses stem from the nature
of the specification document.

1.3 The Importance of the Specification
When we say that a piece of software contains an ‘error’ we mean it does not behave
as expected. There could be two reasons for this: either the software does not conform
to its specification or there are errors or omissions in the original specification.

For the software development methods mentioned above, it is the process of 
testing that aims to locate these software errors. Testing involves running a program
with a set of inputs and comparing the actual outputs from the program against the
expected outputs (as defined in the specification). There are several limitations to
using testing as the sole approach to software error detection:

1. Testing cannot take place until some implementation is available, so correcting
errors uncovered by testing could involve retracing many steps and undoing work
previously done. The earlier the error occurred the more work this involves. 
If testing is the only approach to error detection then errors in the specification
involve the greatest amount of work to rectify.

2. Testing can only help to uncover errors – it cannot guarantee the absence of 
them. Since, for any application, it is impossible to test every set of input values,
residual errors will always have to be accepted.

3. Testing is always carried out with respect to requirements as laid down in the
specification. If the specification document is in any way ambiguous it is open 
to interpretation, and hence misinterpretation, making testing a rather inexact
science.

Clearly the specification plays a vital role in the reliability of the software produced.
The design, and subsequent implementation, is based upon the information in the
specification, and the testing process relies upon the developers’ understanding of the
specification to determine whether or not the software is behaving correctly.
Misunderstandings in the specification can lead to the delivery of final applications
that do not match user requirements (see Figure 1.1).

For the vast majority of software applications in use today, the specification is cap-
tured in a mix of natural language and diagrams. For example, the Unified Modelling
Language (UML) notation is used to specify and design systems according to the 
principles of object-oriented development, whereby a system is thought of as being
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composed of a number of fundamental units called objects. There are two important
aspects to an object: the information that it holds (referred to as its attributes) and
the things it can do (referred to as its methods or operations). Central to this is the
notion of a class, which is the template (or blueprint) for all the objects belonging to
that class. In UML a class can be specified using a class diagram. Figure 1.2 depicts 
a typical UML class diagram specifying a BankAccount class.

The name of the class, BankAccount, is given in the top compartment of the UML
diagram, the attributes are listed in the second compartment and the methods in the
final compartment. Types are allocated to attributes and methods. In Figure 1.2, 
the account number and name are both given string types whereas a real number is
the appropriate type to model the balance. Methods require types for input parame-
ters and any output result. In UML, the types allocated to any input parameters are
listed in round brackets following the method name (with an empty pair of brackets

4 Formal Software Development

Client Developer

Final application

The specification

Testing

Figure 1.1 Ambiguities in the specification and the limitations of testing can result in
errors in the final application

BankAccount

accountNumber: String

accountName: String

balance: Real

deposit (Real)

withdraw (Real): Boolean

currentBalance(): Real

Figure 1.2 A typical UML diagram for the BankAccount class



indicating that no input parameter is required for the method). If the method outputs
a result, the type of that result is listed after the brackets (if no type is listed this 
indicates that no result is returned from the method). Figure 1.2 indicates that the
withdraw method, for example, takes a single real number as a parameter and returns
a boolean value.

Often, a diagram such as this is supplemented by a natural language description for
each method. For example, the withdraw method of the BankAccount class might have
its UML specification supplemented with the following natural language description:

withdraw: receives a requested amount to withdraw from the bank account and, if
there are sufficient funds in the account, meets the request. Returns a boolean value
indicating success or failure of the attempt to withdraw money from the account.

Diagrams and natural language descriptions, such as this, have the advantage that
they are easy to follow by non-computing experts and so provide a good medium 
for discussions with clients. Unfortunately, natural language and diagrams do not
have a fixed meaning from one person to the next and so are open to many different
interpretations. We say these notations do not have a fixed semantics.

To illustrate, examine the natural language specification of the withdraw method
given above. On first reading the meaning of this method might be clear. It is, however
(like all natural language statements), ambiguous and open to interpretation.
Consider the restrictions placed on the method that the requested amount should be
withdrawn only ‘… if there are sufficient funds …’. What is meant by the term 
‘sufficient’? Is it that the bank account must contain at least the amount of money that
is requested for withdrawal? Or is there a minimum balance that must be maintained?
Or is there an agreed overdraft limit?

A boolean value is returned from this method to indicate success or failure: does 
a value of false indicate that an error has occurred or that there was no error? Also,
the amount to be withdrawn is specified to be a real number; is this to be a positive or
a negative real number? All of the issues highlighted will obviously be crucial to the
correct functioning of this method.

Not only is the original specification of this method ambiguous, it is also incomplete
and could be inconsistent with the specification of the rest of the class. A specification
can be considered incomplete when the behaviour is not completely defined. In this
case the specification of the withdraw method describes what should happen when
there are ‘sufficient’ funds in the account, but does not make clear what should 
happen when there are insufficient funds. Should the method withdraw as much
money as is allowed or withdraw no money at all? The danger here is that the incom-
pleteness is overlooked and that assumptions are made during design and program-
ming, leading to the delivery of a faulty system.

Finally, a specification is inconsistent when it contains contradictions. For 
example, an overdraft facility might be specified elsewhere. One interpretation of the
withdraw method is that without funds in the bank account a given amount cannot be
withdrawn. Both behaviours cannot be satisfied in an implementation.

With misinterpretations of a few lines like this, think how many different ways 
a specification running to many dozens of pages could be interpreted. Such misinter-
pretations might be even greater if the development team crosses national and 
cultural boundaries. Clearly, to use these notations alone to describe critical software
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is unwise. To overcome these difficulties it is desirable to use a specification notation
with a fixed, unambiguous semantics.

Notations that have a fixed semantics are known as formal notations, or formal
languages. A fixed semantics is achieved by defining a language in a completely
unambiguous way using a mathematical framework. Ideally a specification should
describe what the system is to do without saying how to do it. That is, a specification
should be as abstract (not cluttered by implementation details) as possible. The lan-
guage of mathematics is perfectly suited for this task as it allows a far more abstract
description of the system to be captured using simple mathematical concepts such as
sets, relations and functions.

In all other branches of engineering (such as civil, mechanical and electrical), the
use of mathematics to help build reliable products is the normal approach. The idea
that an aircraft or a bridge would be constructed without the aid of mathematical
models, or the idea that the only way to identify defects would be to observe the
behaviour of test scenarios after the construction of the final system, would be
unthinkable. Yet this is how the large majority of software applications are developed!

1.4 Formal Methods
Formal methods constitute a branch of software engineering that incorporates the
use of mathematics for software development. A formal method provides a formal
language in which to express the initial specification and all future design steps
towards the final program. These design steps are often referred to as transformations
(see Figure 1.3).

A formal method is more than just a specification language for recording 
these transformations. It also includes a proof system for demonstrating that each
transformation preserves the formal meaning captured in the previous step. A proof
system is a means of guaranteeing the correctness of a statement and relies upon
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initial formal specification

1st transformation

2nd transformation

nth transformation

final program

Figure 1.3 A formal approach to software development



mathematical logic. In theory, if every transformation can be shown to describe 
a system whose behaviour is consistent with the previous step then, by the time 
the last step is reached, the final program will have been shown to be consistent with
the original specification. This is a much more robust approach to checking for 
program correctness than testing alone, as proofs demonstrate correctness for all
possible test cases, whereas testing demonstrates correctness only for the test cases
investigated.

In reality the skill (and tools) required to carry out such a proof means that the
proofs could themselves contain errors. Also, there is no guarantee that the initial for-
mal specification captures the original user requirements accurately, and there is
always the risk of introducing erroneous behaviour when replacing the abstract data
structures in the specification (such as sets and mappings) with their more concrete
code-level counterparts (such as arrays and linked lists). For this reason, testing still
plays an important role in a formal approach to software development. However, the
use of formal methods offers many advantages:

● Formal specifications can help considerably in generating suitable test cases.
● The discipline required in producing a formal specification of user requirements and

the ability to analyse a specification (which only arises if the specification language
has a well-defined semantics) allows for feedback on system specifications at early
development stages, increasing confidence that the specification accurately 
captures the real system requirements.

● Important properties (such as internal consistency) of the initial specification 
can be checked mathematically and incorporated as run-time checks in the final
program.

● Proofs can help uncover design errors as soon as they are made, rather than having
to wait for testing of the final implementation.

● A proof of program correctness can be constructed that is a much more robust
method of achieving program correctness than is testing alone.

Despite these gains, the perceived difficulty of applying formal methods and the
shortage of software developers trained in their use means that their application has
tended to be restricted to the development of high integrity software, where correct-
ness is essential. For the development of some high integrity software, their use may
be mandatory. For example, the UK’s Ministry of Defence (as stipulated in defence
standard 00-55) requires that safety critical software produced for it be formally
developed.

1.5 Classifying Formal Methods
Many formal methods have been established over the years. A common way of classi-
fying these formal methods is by the approach taken in the method of specification.
The two principal approaches are algebraic and model-based approaches.

Using an algebraic approach, once a list of operations has been identified, their
behaviour is captured indirectly by describing the relationship between these opera-
tions as a set of properties (or axioms as they are sometimes known). All software
developed from these specifications has to show that it obeys the same properties as
those specified.
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In a model-based approach an abstract mathematical model is built of the data,
using abstract mathematical types such as sets. The behaviour of the operations 
is then specified directly with respect to this model. Often this leads to much more
concise specifications than those arrived at using an algebraic approach.

Finally, some formal methods are more suited for the specification of sequential sys-
tems, while others are designed for the specification of concurrent systems. Table 1.2
classifies some of the leading formal methods according to these distinctions.

The most common and well-established formal methods are those that are model-
based and developed to specify sequential systems. Part of the reason for this is that
model-based approaches are considered easier to use as they map better on to our
intuitive understanding of systems as a store of data and a set of operations. Also,
specifying concurrent systems involves subtle timing considerations that are not
always easy to capture formally.

Of those model-based methods used to develop the sequential systems listed, VDM
(the Vienna Development Method) is the most mature, having been developed in the
late 1970s. It has a recognized international standard (www.ifad.dk/vdm/bnf.html)
that gives the formal semantics of the language. The method also has a comprehen-
sive set of tools supporting it. Since it is one of the longest established formal methods
it also has the longest history of use in industry. Of the others, both Z (pronounced
Zed) and B are now well established with well-documented industrial experience. 
All share a strong similarity with VDM. Because of its relative maturity, VDM is the
method we shall be following in this text.

1.6 Lightweight Formal Methods
Informal methods of software development (such as the Structured System Analysis
and Design Methodology) often prescribe strict rules for progressing from one 
stage of software development to the next. The majority of formal methods, on the
other hand, provide a selection of tools for the development of reliable software 
systems rather than prescribe their use at every stage of development. Thus, for soft-
ware of high integrity, all the tools provided by a formal method (such as a modelling
language for specification and a formal proof system for software design and imple-
mentation) could be utilized. Proofs themselves may be carried out (discharged)
totally formally (that is, where every step is justified using the method’s proof system)
or proofs may just be rigorous (in which case they can be discharged by means 
of a sound argument rather than a complete proof). Again, the integrity level of the
software will inform this decision.
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Table 1.2 Classifying some leading formal methods

Algebraic Model-based

Sequential Larch Vienna Development Method (VDM)
systems Z

B

Concurrent Calculus of Communicating Systems (CCS) Prototype Verification System (PVS)
systems OBJ Communicating Sequential  

Processes (CSP)



Where software is of lower integrity the modelling tools available in the language
might be adopted for software specification, but development may then proceed using
more traditional approaches with integrity checks being argued informally or by
means of run-time assertions (checks) embedded into code. Using a formal method in
this way, with less reliance upon the discharge of proof obligations, is often referred
to as a lightweight approach to the use of formal methods. It is a lightweight
approach that we shall adopt in this text (Figure 1.4).

As you will come to see, a VDM specification corresponds closely to the notion 
of a class in an object-oriented methodology. The approach we will take in this text 
is to record the informal specification of software using the UML class notation. 
We will then provide a formal specification for a UML class in the form of a VDM 
specification.

Following each chapter that deals with an aspect of the modelling (specification)
language of VDM (known as VDM-SL), we demonstrate the development of Java 
programs from the VDM specifications. The correctness of any design decisions we
make will be argued rigorously rather than formally, and backed up by assertions
embedded in the final Java code.
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}

Figure 1.4 A lightweight approach to formal program development in VDM



Over the course of this text we will examine the data types (such as natural 
numbers, sets and sequences) available in VDM-SL, and demonstrate their use
through example specifications. Before we embark upon these topics, however, the
next chapter covers the topic of mathematical logic that forms the backbone of all 
formal methods.
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1. Identify five examples of safety critical software and try and rank them in terms of their
levels of integrity.

2. Give an example of software that is both mission and safety critical.
3. Explain why testing cannot guarantee that a program is correct.
4. Why is natural language a poor choice for expressing specifications?
5. Identify any weaknesses in the following requirements definition:

‘Software is required to monitor a collection of documents kept in a library. There may
be multiple copies of each document. Some of the documents are deemed to be of
high importance. Documents can be borrowed from the library by certain members of
staff. There must always be at least one copy of any document deemed to be of high
importance left in the library. All other documents may be removed. The software
needs to record each document’s identity code (consisting of letters and numbers), and
whether or not it is of high importance, as well as the number of copies. Documents
can be removed from the library only by providing the correct document code.’

EXERCISES



CHAPTER 2
Propositional and 
Predicate Logic

11

2.1 Introduction
In this chapter we present the aspects of classical logic that are necessary for the
understanding of formal development methods. Mathematical logic was developed in
order to give a precise and agreed meaning to statements made in a natural language
such as English. Providing such a rigorous framework makes it possible to reason 
precisely about statements made in the natural language, and allows us to develop 
a set of laws that are internally consistent.

We begin by presenting the propositional logic, which deals with simple truth-
valued statements that can be combined according to a set of rules. We then go on to
present the even more powerful predicate logic, which is an essential tool needed in
the formal specification of systems.

2.2 Propositions
In classical logic, propositions are statements that are either TRUE or FALSE.

The following are examples of propositions that evaluate to TRUE:

There are seven days in a week
Accra is the capital of Ghana
2 � 4 � 6

The following propositions evaluate to FALSE:

The angles of a triangle add up to 360�
London is the capital of France
2 � 4 � 7

In mathematics we often represent a proposition symbolically by a variable name
such as P or Q.

For example:

P: I go shopping on Wednesdays
Q: 102.001 � 101.31

In the worlds of computing and mathematics, occasions arise when it is not 
possible to evaluate expressions precisely – maybe a program terminated incorrectly,



or perhaps somebody tried to evaluate the square root of a negative integer. As 
you will find out later in this chapter, it is possible to account for such situations by
defining a three-valued logic, which allows a proposition to take the value UNDEFINED

as well as TRUE or FALSE.

2.2.1 LOGICAL CONNECTIVES
Simple propositions can be combined into compound statements by operators called
logical connectives. The purpose of defining these connectives is to provide a rigor-
ous framework that gives precise meaning to such words as ‘and’ and ‘or’ that occur in
the natural language. The way we give semantic meaning to these connectives is to
provide tables known as truth tables, which give a value for every possible combina-
tion of the values of the individual statements that make up the compound propo-
sition. This is made clear below as we explain the meaning of the various connectives.

The and operator
The operator known as and is represented by the symbol �. The statement P and Q
is therefore represented by:

P � Q

Thus if P represented the statement I like shopping and Q represented the statement
The sun is shining then P � Q would represent the statement I like shopping and the sun
is shining.

The precise meaning of this operator is given in the following truth table, where
TRUE and FALSE are represented by T and F, respectively. You can see that the first two
columns of the truth table provide all the possible combinations of the values of P and
Q – and for each row, the final column shows the corresponding value of the 
combined statement P � Q.

It can be seen from the table that for the compound statement P � Q to be TRUE

requires that both individual statements P and Q are TRUE; if either P or Q is FALSE, then
P � Q is FALSE.

Combining two propositions with the and operator is known as conjunction; each
individual proposition in the compound statement is known as a conjunct.

The or operator
The operator known as or is represented by the symbol �. The statement P or Q
is therefore represented by:

P � Q

12 Formal Software Development

P Q P � Q

T T T

T F F

F T F

F F F
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Thus if P represented the statement It is raining and Q represented the statement
Today is Tuesday then P � Q would represent the statement It is raining or today is
Tuesday.

The precise meaning of this operator is given in the following truth table.

P Q P � Q

T T T

T F T

F T T

F F F

It can be seen from the table that the compound statement P � Q is FALSE only when
both individual statements P and Q are FALSE; if either P or Q is TRUE, then P � Q is TRUE.
Using the above example, if the statement It is raining or today is Tuesday were FALSE,
then we could conclude both that it is not raining and that today is not Tuesday.

Combining two propositions with the or operator is known as disjunction; each
individual proposition in the compound statement is known as a disjunct.

The implication operator
In defining an implication operator we attempt to give meaning to the expres-
sion P implies Q. The implication operator is represented by the symbol ⇒. The 
statement P implies Q is therefore represented by:

P ⇒ Q

An alternative way of expressing implication is if P then Q. Thus if P represented 
the statement It is Wednesday and Q represented the statement I do the ironing then 
P ⇒ Q would represent the statement If it is Wednesday I do the ironing.

The truth table for implication appears next, and requires some explanation.

The first two rows of the table capture the central idea of implication: if the first and
second statements are both TRUE, then the statement that the first implies the second
is also TRUE, whereas if the first is TRUE but the second is not, then the statement that
the first implies the second is FALSE.

The meaning of the third and fourth rows is not so apparent, however. This is
because the statement P implies Q in fact says nothing about the case when P is FALSE.
In other words, it does not deal with the concept of ‘otherwise’. In order to understand
this, it is useful to think about the way we deal with selection in programming 

P Q P ⇒ Q

T T T

T F F

F T T

F F T



languages. The implication operator is analogous to an IF … THEN statement. When
making use of such a statement in a program, we do not define any alternative behav-
iour – if the condition is met then we perform a set of statements; if not, we do noth-
ing and carry on with the program. To define alternative behaviour – in other words
to deal with the ‘otherwise’ clause, we would have to use an IF … THEN … ELSE
statement, which is a more powerful statement than the one suggested by the impli-
cation connective; as we shall see in a moment, there is another connective that deals
with the concept of ‘otherwise’.

In capturing the meaning of implication, the value of the compound statement
when the first proposition is FALSE could really be chosen arbitrarily. In fact, as can be
seen from the truth table, we choose to define the value as TRUE in both cases. Making
this choice helps to make the mathematics more complete, so that when we combine
the implication connective with other connectives we arrive at results that more truly
follow our logical way of thinking. For example, with implication defined as above,
the value of the compound statement P � Q ⇒ P evaluates to TRUE for all possible 
values of P and Q.

Looking at the truth table, you can see that there is a further way of expressing the
meaning of P ⇒ Q in words, namely as P only if Q. This is because in the case where
the compound statement is TRUE, then P is TRUE only when Q is TRUE.

The equivalence operator
The idea of equivalence deals with the ‘otherwise’ part of implication, and is 
analogous to an IF … THEN … ELSE statement in a programming language; it is 
represented by the symbol ⇔. Effectively it states: if P is TRUE then Q is TRUE, otherwise
Q is FALSE; in other words, P is equivalent to Q, which is represented by:

P ⇔ Q

The truth table for equivalence is as follows.

It can be seen from the table that equivalence represents two-way implication: 
P implies Q and Q implies P. Another way of expressing equivalence is P if and only if Q,
which is sometimes written:

P iff Q

The exclusive or operator
When we presented the or operator above, we noted that the compound statement P
or Q was TRUE as long as either or both of the disjuncts were TRUE. In fact, this does not
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P Q P ⇔ Q

T T T

T F F

F T F

F F T



represent the most common use of the word ‘or’ as used in natural language, where
the assumption is usually made that one or other of the disjuncts is TRUE, but not both.
For example, if somebody were to say I will go to the theatre or I will go to the cinema,
it is likely that what is meant is that the person will go to either the theatre or the cin-
ema, but not to both. The natural language ‘or’ usually implies that only one or other
of the statements is TRUE but not both. This corresponds to the logical operator known
as exclusive or (sometimes referred to as xor), which is represented by the symbol �.
Thus, the statement represented by P or Q but not both is represented by:

P � Q

The truth table for exclusive or is as follows.

2.2.2 NEGATION
The operation known as negation yields a proposition with a value opposite to that 
of the original one. The operator in question is called the not operator and is repre-
sented by the symbol ¬ (or sometimes by ~). Thus if P is a proposition, then not P is
represented by:

¬P

By definition, if P is TRUE, then ¬P is FALSE; if P is FALSE then ¬P is TRUE. For example
if P represented the statement I like dogs, then ¬P represents the statement I do not
like dogs. This is summarized in the truth table for the not operator, as follows:

2.2.3 COMPOUND STATEMENTS AND THE ORDER OF PRECEDENCE OF OPERATORS
Ambiguity can easily arise in compound statements that contain more than one
proposition. Consider, for example, the statement:

P � Q � R

This could be evaluated in two ways: we could evaluate P � Q, and then evaluate 
the disjunction of this value with R; alternatively, we could evaluate Q � R, and then
evaluate the conjunction of this value with P.
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P Q P � Q

T T F

T F T

F T T

F F F

P ¬P

T F

F T



It is necessary to agree an order of precedence on the operators, and in VDM the
agreed order of precedence is (starting with the highest) as follows:

¬, �, �, ⇒, ⇔

As with any branch of mathematics, brackets are used to indicate the highest 
precedence of all, and any expression in brackets must therefore be evaluated first.

Thus, as an example, the expression:

¬P � Q

means the conjunction of ¬P with Q, whereas the expression

¬(P � Q)

means the negation of the conjunction of P with Q.
To illustrate this, assume that P represented the statement Physics is easy and 

Q represented the statement Chemistry is interesting, then:

¬P � Q would mean Physics is not easy and chemistry is interesting.
¬(P � Q) would mean It is not true both that physics is easy and that chemistry is

interesting.

2.2.4 LOGICAL EQUIVALENCE
Two compound propositions are said to be logically equivalent if identical results are
obtained from constructing their truth tables. This is denoted by the symbol �. 
We shall demonstrate this by proving the following identity (which is known as 
De Morgan’s law):

¬(P � Q) � ¬P � ¬Q

Firstly we construct the truth table for the left-hand side of the identity:

Now we do the same for the right-hand side:

16 Formal Software Development

P Q P � Q ¬(P � Q)

T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P � ¬Q

T T F F F

T F F T T

F T T F T

F F T T T



We can see that the results in the final column of each truth table are the same, thus
demonstrating the truth of the identity.

As a further example we will return to the discussion of the previous section, and
demonstrate that:

(P � Q) � R � P � (Q � R)

The left-hand side of the expression:
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P Q R P � Q (P � Q) � R

T T T T T

T T F T T

T F T F T

T F F F F

F T T F T

F T F F F

F F T F T

F F F F F

P Q R Q � R P � (Q � R)

T T T T T

T T F T T

T F T T T

T F F F F

F T T T F

F T F T F

F F T T F

F F F F F

Clearly the last columns of the truth tables are not the same, showing that the two
expressions are not logically equivalent.

2.2.5 TAUTOLOGIES AND CONTRADICTIONS
A statement which is always TRUE (that is, all the rows of the truth table evaluate to
TRUE) is called a tautology.

The right-hand side of the expression:



For example, the following statement is a tautology:

P � ¬P

This can be seen from the truth table:
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P ¬P P �¬P

T F F

T F F

F T F

F T F

A statement which is always FALSE (i.e. all rows of the truth table evaluate to FALSE)
is called a contradiction.

For example, the following statement is a contradiction:

P � ¬P

Again, this can be seen from the truth table:

P ¬P P � ¬P

T F T

T F T

F T T

F T T

In both the above cases, this is entirely what we would expect from the semantic
meaning of the �, � and ¬ operators.

2.2.6 THREE-VALUED LOGIC
Classical logic assumes that all expressions evaluate to TRUE or FALSE. In reality, this is
not always the case when evaluating an expression, because sometimes an expression
can be undefined – for example, the expression 0/0. Undefined terms are very com-
mon in programming situations – for example, when a variable is first declared and
has not yet been assigned a value.

It is therefore important to provide results from expressions that contain undefined
terms, and for this purpose a three-valued logic has been developed; in this system of
logic a proposition could have the value TRUE, FALSE or UNDEFINED. The truth tables for
the connectives in our three-valued system are presented next.
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P Q P � Q

T T T

T F F

T UNDEFINED UNDEFINED

F T F

F F F

F UNDEFINED F

UNDEFINED T UNDEFINED

UNDEFINED F F

UNDEFINED UNDEFINED UNDEFINED

P Q P � Q

T T T

T F T

T UNDEFINED T

F T T

F F F

F UNDEFINED UNDEFINED

UNDEFINED T T

UNDEFINED F UNDEFINED

UNDEFINED UNDEFINED UNDEFINED

P Q P ⇒ Q

T T T

T F F

T UNDEFINED UNDEFINED

F T T

F F T

F UNDEFINED T

UNDEFINED T T

UNDEFINED F UNDEFINED

UNDEFINED UNDEFINED UNDEFINED



2.3 Predicate Logic
One of the limitations with the propositional logic is that, while it allows us to argue
about individual values, it does not give us the ability to argue about sets of values. As
we shall see in Chapter 5, a set is any well-defined, unordered, collection of objects.
For example we could refer to the set containing all the people who work in a partic-
ular office; the set of whole numbers from 1 to 10; the set of the days of the week; 
the set of all the breeds of cat in the world. In mathematics, we often represent a set
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P Q P ⇔ Q

T T T

T F F

T UNDEFINED UNDEFINED

F T F

F F T

F UNDEFINED UNDEFINED

UNDEFINED T UNDEFINED

UNDEFINED F UNDEFINED

UNDEFINED UNDEFINED UNDEFINED

P Q P � Q

T T F

T F T

T UNDEFINED UNDEFINED

F T T

F F F

F UNDEFINED UNDEFINED

UNDEFINED T UNDEFINED

UNDEFINED F UNDEFINED

UNDEFINED UNDEFINED UNDEFINED

P ¬P

T F

F T

UNDEFINED UNDEFINED



in a generalized format, denoting the name of the set by an upper-case letter and the
elements by lower-case letters. For example:

A � {s, d, f, h, k}
B � {a, b, c, d, e, f}

The symbol � means ‘is an element of’. Therefore the statement ‘d is an element of
A’ is written:

d � A

The statement ‘p is not an element of A’ is written:

p � A

For the purpose of reasoning about sets of values, a more powerful tool than the
propositional logic has been devised, namely the predicate logic.

A predicate is a truth-valued expression containing free variables. These allow 
the expression to be evaluated by giving different values to the variables. Once the
variables are evaluated they are said to be bound.

2.3.1 EXAMPLES OF PREDICATES
Predicates can be named with either a single letter, or with a word that expresses the
meaning of the predicate; the variables are placed in brackets after the name. This is
made clear in the following examples:

C(x): x is a cat
Studies(x,y): x studies y
Prime(n): n is a prime number

A statement such as C(x) can be read C of x.

2.3.2 BINDING VARIABLES
Predicates such as those above do not yet have a value – they only have a value 
when the variables themselves are given a value. There are two ways in which this can
be done.

1. By substitution (giving a value to the variable)
For example, using the above three predicates:

C(Simba): Simba is a cat
Studies(Olawale, physics): Olawale studies physics
Prime(3): 3 is a prime number

The above expressions now have a value of TRUE or FALSE.
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2. By quantification
A quantifier is a mechanism for specifying an expression about a set of values. There
are three quantifiers that we can use, each with its own symbol:

–The universal quantifier ∀
This quantifier enables a predicate to make a statement about all the elements in 
a particular set. For example, if M(x) is the predicate x chases mice, we could write:

∀x � Cats ● M(x)

This reads For all the x which are members of the set Cats, x chases mice, or, more 
simply, All cats chase mice.

– The existential quantifier ∃
In this case, a statement is made about whether or not at least one element of a set
meets a particular criterion. For example, if, as above, P(n) is the predicate n is a
prime number, then we could write:

∃n � � ● P(n)

This reads There exists an n in the set of natural numbers such that n is a prime 
number, or, put another way, There exists at least one prime number in the set of 
natural numbers.

–The unique existential quantifier �!
This quantifier modifies a predicate to make a statement about whether or not 
precisely one element of a set meets a particular criterion. For example, if G(x) is the
predicate x is green, we could write

∃!x � Cats ● G(x)

This would mean There is one and only one cat that is green.
If the set over which the predicate is defined is clearly stated in advance, it can be
omitted from the expression (as in Exercise 6 below).
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1. Let P be ‘It is cold’ and Q be ‘It is raining’. Give simple sentences which represent the
following statements:

(a) ¬P
(b) P � Q
(c) P � Q
(d) Q � ¬P
(e) ¬P � ¬Q
(f) ¬¬Q

2. Let P be ‘She is tall’ and Q be ‘She is intelligent’. Express each of the following 
statements symbolically:

(a) She is tall and intelligent.
(b) She is tall, but not intelligent.
(c) It is false that she is tall or intelligent.

EXERCISES
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(d) She is neither tall nor intelligent.
(e) She is tall, or she is short and intelligent.
(f) It is not true that she is short or unintelligent.

3. Show that 2(f) above is equivalent to 2(a).
4. Construct truth tables for the following:

(a) ¬P � Q
(b) (P ⇒ Q) ⇒ (P � Q)

5. Use truth tables to show that:

(a) P � ¬(P � Q) is a tautology
(b) (P � Q) � ¬(p � Q) is a contradiction

6. Consider the following predicates defined over the domain of people:

S(x) : x is a student
W(x): x works hard

Now express the following expressions in English:

(a) S(Natalie)
(b) ∀x ● (S(x) ⇒ W(x))
(c) ∃x ● W(x) ⇒ ¬S(David)
(d) ∃!x ● (S(x) � W(x))

7. Consider the following predicates defined over the domain of vegetables:

R(x): x is a root vegetable
T(x): x tastes nice

Additionally the proposition P is defined as:

P: Peas are blue

Now express the following statements symbolically:

(a) If peas are blue then cabbage tastes nice.
(b) There exists a root vegetable that tastes nice.
(c) Lettuce is a root vegetable and peas are blue.
(d) All root vegetables taste nice.
(e) Peas are blue or there is a vegetable which is a root vegetable and which does not

taste nice.





CHAPTER 3
An Introduction to
Specification in VDM-SL
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3.1 Introduction
In Chapter 1 you were introduced to the idea of using formal mathematical methods
for the purpose of developing high integrity software. As we explained in that chap-
ter, the methodology that we will be using in this book is VDM, and now that we have
covered the fundamental mathematical concepts that you need for an understanding
of formal methods, we are in a position to begin our study of VDM-SL, the
Specification Language component of VDM.

We begin by analysing the requirements for a very simple system, and using the
notation of the Unified Modelling Language (UML) to specify the software informally;
from there we develop our first formal specification in VDM-SL.

Once we have familiarized you with the basic concepts, we go on to make our 
case study more realistic by adding greater complexity, and from there we derive 
a complete specification for the new software, and produce a standard template for
VDM specifications.

3.2 The Case Study: Requirements Analysis
The example we will use throughout this chapter will be that of an incubator, the tem-
perature of which needs to be carefully controlled and monitored in order to provide
the correct conditions for a particular biological experiment to be undertaken. We will
specify the software needed to monitor and control the incubator temperature.

In developing any software system the first stage in the process involves an analysis
of the system and an initial statement of the requirements. As we said in the intro-
duction, in the first instance we are going to develop an extremely simple version of
the system; later in the chapter we will add to the complexity of the system, and there-
fore produce a new specification.

It is very important, in any requirements definition, to be clear about the system
boundaries, and we should make it clear here that in this initial version, control of 
the hardware lies outside of our system. In other words, for the time being we will 
be specifying a system that simply monitors the temperature of the incubator. Later in
the chapter we will modify the software requirements by adding a mechanism that
actually controls the hardware as well as monitoring the temperature of the incubator.

The hardware increments or decrements the temperature of the incubator in
response to instructions (from someone or something outside of our system), and
each time a change of one degree has been achieved, the software is informed of the



change, which it duly records. However, safety requirements dictate that the temper-
ature of the incubator must never be allowed to rise above 10� celsius, nor fall below
�10� celsius.

3.3 The UML Specification
In the simple system described in the previous section, we can identify a single class,
IncubatorMonitor. Figure 3.1 shows the UML specification for the IncubatorMonitor
class.

You can see that we have identified one attribute and three methods. The single
attribute records the temperature of the system and will be of type integer. The system
is, of course, rather a crude one, dealing as it does with whole numbers only, but there
will be plenty of time for developing more sophisticated and realistic systems once we
have more tools at our disposal. With regard to the methods, the first two do not
involve any input or output (since they merely record an increase or decrease of one
degree). The final method reads the value of the temperature, and therefore will 
output an integer.

3.4 Specifying the State
The first thing we will consider for our formal specification is what is known as the
state of the system. In VDM-SL the state refers to the permanent data that must be
stored by the system, and which can be accessed by means of operations. It corre-
sponds to the attributes in the class diagram. The state is specified by declaring vari-
ables, in a very similar manner to the way that this is done in a programming
language; the notation is not dissimilar from that used in the UML diagram. We spec-
ify one or more variables, giving each a name, and stating the type of data that the
variable represents – in other words, the allowable values that the variable could take.

Throughout this text we will be making use of the intrinsic types available in VDM-
SL – these are also common to the world of mathematics. They are:

�: natural numbers (positive whole numbers)
�1: natural numbers excluding zero
�: integers (positive and negative whole numbers)
�: real numbers (positive and negative numbers that can include a fractional part)
�: boolean values (TRUE or FALSE)
Char: the set of alphanumeric characters
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IncubatorMonitor

temp: Integer

increment()

decrement()

getTemp(): Integer

Figure 3.1 The specification of the IncubatorMonitor class
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To illustrate how we specify the state in VDM-SL, we can consider our incubator
monitor system. We have seen in the previous section that for our simple system, the
only data item that we need is the current temperature of the incubator; this will be
of type integer, and we shall call it temp.

So now we are in a position to specify the state of the IncubatorMonitor system,
which we do in the following way:

state IncubatorMonitor of

temp : �

end

You can see from the above how this is done; the declaration of the state is intro-
duced with the line:

state �Name� of

where �Name� is the chosen name for our system. The state definition is terminated
with the keyword end. By convention the system name usually begins with an upper-
case letter (as it does in UML).

The variables are then listed with the chosen name separated from its type by a
colon. By convention, variable names usually begin with a lower-case letter (again this
is also the convention in UML).

In the above specification the variable temp (to hold the temperature) is an integer
and is therefore declared to be of type �. As this is the only item of data to record here,
our state definition is now complete.

3.5 Specifying the Operations
We will now consider the very important matter of the behaviour of the system. We
will need to specify a number of operations that the system should be able to perform
and by which means the data (that is the state) can be accessed. In VDM we tend to
use the word operation, whereas in most object-oriented texts you will tend to see the
word method. In VDM, operations by definition access the state in some way, either by
reading or writing the data, or both.

We saw in section 3.3 that in our system there are three operations that we need to
consider: an operation that records an increment in the temperature; an operation
that records a decrement; and one that simply reads the value of the temperature. 
In VDM-SL an operation consists of four sections, which we explain below. The four
sections are:

● the operation header
● the external clause
● the precondition
● the postcondition.



We will consider the increment operation first. We present the complete operation
specification below, and analyse it afterwards:

As we have said, there are four parts to consider here. The first line comprises the
operation name – in this case increment – followed by a pair of brackets. By conven-
tion, operation names are usually written in upper case in VDM texts; however, here
we will use lower case so that the operation names will correspond to the UML dia-
grams, and later to the Java code, where the convention is also to use lower case. The
UML diagram (Figure 3.1) indicates that for this operation we do not require the input
of any parameters; were there to be any, however, they would be placed inside these
brackets – each name followed by its type (separated by a colon) and each item in the
list separated from the next by a comma. You will see examples of this later in the
chapter. Similarly, if there were an output from the operation, this would be placed,
along with its type, after the brackets.

The next line is called the external clause, introduced by the VDM keyword ext.
Keywords are written in lower case, and you will find in most texts (including this
one) that they are bold and non-italic, whereas variable and type names are plain but
italicized. The purpose of the external clause is to restrict the access of the operation
to only those components of the state that are specified, and to specify the mode of
access, either read-only (indicated by the keyword rd) or read-write (indicated by the
keyword wr). In our example, there is only one component to the state (temp) and in
this operation it is necessary to have read-write access to that component, since the
operation needs actually to change the temperature. Thus the line is written:

ext wr temp : �

Notice that we have to state the type (in this case �) along with the component of
the state to which we are providing access.

The third and fourth lines of the operation are known as the precondition and
postcondition, respectively. We will deal with the postcondition first, as it is easier to
understand the purpose of the precondition once the postcondition has been
explained.

The postcondition – which is introduced by the keyword post – is perhaps the most
important part of the whole operation, for it is here that the essence of the operation
is captured. The postcondition states the conditions that must be met after the 
operation has been performed; it is a predicate, containing one or more variables, 
the values of which must be such as to make the whole statement true. It is important
to note that the only state variables that can be included in the postcondition are those
that are referred to in the ext clause.

Before considering this in regard to the increment operation, it is necessary to intro-
duce some new notation. Any operation that has write access to a component of the
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increment()

ext wr temp:�

pre temp � 10

post temp� temp�1



state can change the value of that component. It is therefore necessary to find a way
of distinguishing between the value of the state component before the operation takes
place and the value after it has taken place – in other words the old value and the new
value. In VDM-SL we do this by placing an overscore over the old value, to distinguish
it from the new value.1 Thus the postcondition for our increment operation is:

We are saying that after the operation has terminated the new value of temp should
be equal to the old value plus 1.

It is very important to stress that here we are describing what should happen, and
not how it should happen. There is no question of our suggesting any particular algo-
rithm that should be used to bring about the postcondition (like assignment, 
for example) – all we are saying is that any eventual implementation of a particular
operation must guarantee the truth of the postcondition. Thus the postcondition
above could equally well be stated as:

or as:

Now we can consider the precondition, which is introduced by the VDM keyword
pre. The purpose of the precondition is to place any necessary constraints on an 
operation. In our incubator system, for example, we know that the temperature must
be allowed to vary only within the range �10 to �10 degrees. If we did not specify 
a precondition here, we would be allowing the system to record a temperature that
was outside of the allowed range – we would be allowing abnormal behaviour of the
system. Effectively, by including a precondition, we are specifying the outcome of 
the operation (that is the postcondition) only if certain conditions are met prior to the
operation being invoked. If our precondition is not met we are saying nothing about
what should happen.

Another way of thinking about the purpose of the precondition and the postcondi-
tion is this: anybody implementing an operation is obliged to guarantee the truth of
the postcondition – but only if the precondition is met. The responsibility of ensuring
that the precondition is met therefore rests with the caller of the operation.

You can see, then, that the precondition for the increment operation is as follows:

pre temp � 10

We are saying that, prior to calling the operation, the temperature must be below 
10 degrees. If this is the case, invoking this operation should bring about the state of
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1 There are a number of different ways of indicating the old value of the state, and in other texts
you might see t

�
emp, temp�, or temp~.

post temp � temp � 1

post temp � 1 � temp

post temp � temp � 1



affairs specified in the postcondition. However, if the precondition is not met – that is
to say that the temperature is not less than 10 degrees – we are making no statement
about what should happen.

We can now go on to specify the other operations. The decrement operation is 
structurally the same as the increment operation and does not require any further 
discussion:

Finally we come to the operation that reads the temperature, and which we shall
call getTemp. Here is the complete operation:
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decrement()

ext wr temp : �

pre temp � �10

post temp � temp � 1

getTemp() currentTemp: �

ext rd temp : �

pre TRUE

post currentTemp � temp

There are a few things here that need some explanation. Figure 3.1 shows that this
operation requires there to be an output; as we indicated earlier, the output variable
is placed after the brackets that follow the operation name, together with its type. In
our case we have called this variable currentTemp – as recorded in the UML diagram
in Figure 3.1 it is an integer, and therefore of type � in our VDM specification.

This operation does not require write access to temp, since it is not going to change
this value, but simply read it – hence the use of the keyword rd in the external clause.

Now we come to the precondition, which you might at first find strange, since it
consists simply of the word TRUE. In fact, what we are effectivelty saying is that this
operation needs no precondition – it is a simple read operation and there is no set of
circumstances under which the operation should not take place. A precondition with
a value of TRUE is the weakest possible precondition that we can have. In fact, it is 
perfectly acceptable in such a case to leave the precondition out altogether, rather
than to specify it as TRUE.

Finally we come to the postcondition, which is very straightforward – we just
declare the output value, currentTemp, to be equal to that of the temperature of the
incubator, temp:

post currentTemp � temp

It must be emphasized once again that in this and other postconditions, there is no
notion of assignment, and you should resist any temptation to think of the above state-
ment as assigning the value of temp to that of currentTemp. We are working entirely at



the specification level, and our postconditions are simply predicates that we say must
be true once any implementation that meets our specification is executed. So, once
again, the postcondition could have been stated like this:

post temp � currentTemp

3.6 Declaring Constants
As with many programming languages, it is possible in VDM-SL to specify constants.
This is something that is not essential to any specification, but can greatly enhance its
readability. It is done by using the keyword values, and the declaration would come
immediately before the state definition. In the case of the IncubatorMonitor it would
look like this:
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values

MAX : � � 10

MIN : � � �10

Here the convention is to use upper case for constant values.
These values could then be used in our functions and operations, so, for example,

the precondition of the decrement operation would now look like this:

pre temp � MIN

3.7 Specifying Functions
In the previous section, we described one way in which the readability of the specifi-
cation could be enhanced, namely by specifying constant values. Here we introduce
another tool that is indispensable when specifying more complex systems, namely the
specification of functions that we can utilize later in our operations.

A function is a set of assignments from one set to another. Thus, the function
receives an input value (or values) and maps this to an output value according to some
rule – for example it could accept an integer and output the square of that integer, or
it could accept the name of a person and output that person’s telephone number.

There are two ways in which we can specify a function in VDM-SL. The first way is
to specify the function explicitly. The style of this specification is algorithmic, and we
explicitly define the method of transforming the inputs to the output. This is illus-
trated in the following very simple function that adds two numbers together:

add: � � � → �

add(x, y) 	 x � y

The first line is called the function signature. Its purpose is to state the input types
that the function accepts (to the left of the arrow), together with the type of the 
output (to the right of the arrow). In the above example, the function takes two inputs,
both of type � (real numbers), and outputs a value that is also of type �.



The second part is the definition, and describes the algorithm that is used for trans-
forming the inputs to the output; this definition is placed on the right of the 	 symbol,
which is read ‘is defined as’.

The second method is to specify the function implicitly. Here we use a pre- and
postcondition in the same way as we described for operations – a function, of course,
does not access the state variables. Here is the add function defined implicitly.

As a further example we will specify implicitly and explicitly an abs function, which
calculates the absolute value of an integer. Firstly the implicit specification:

You can see that the postcondition that must be satisfied is a predicate consisting of
two disjuncts; for the predicate to be true, then one of these disjuncts must be true.
The first disjunct, z � 0 � r � �z, ensures that if the input, z, is negative, then the 
output, r, will be equal to �z. The second disjunct, z 
 0 � r � z, ensures that if z is
positive (or zero), the output, r, will be equal to z. Both disjuncts cannot, of course, 
be true at the same time.

And now the explicit definition, which introduces the use of the keywords if, then
and else:
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add(x : �, y : �) z : �

pre TRUE

post z � x � y

abs(z: �) r : �

pre TRUE

post z � 0 � r � �z � z 
 0 � r � z

abs: � → �

abs(z) 	 if z � 0

then �z

else z

factorial: � → �

factorial(n) 	 if n � 0

then 1

else n � factorial(n � 1)

If a function requires a precondition, then, in the explicit definition, this is placed
after the definition.

Some functions can be neatly specified by a recursive definition, whereby the 
function calls itself. An example is given below, where a factorial function is defined:



While it is acceptable to use either an implicit or an explicit function specification
in VDM-SL, the implicit specification has the advantage of being more abstract – in
other words it does not suggest any particular algorithm. Additionally, implicit func-
tion definitions often lead to more concise specifications. In this text we will tend to
specify functions implicitly.

3.8 Specifying a State Invariant
You have seen that our requirements definition states that the temperature of the
incubator must stay within the range �10 to �10� celsius. In VDM-SL there is a mech-
anism by which we can incorporate such a restriction into the specification of the
state. This mechanism involves specifying a function known as a state invariant. By
specifying such a function, we are creating a global constraint, rather than just a local
constraint as we did with our preconditions.

The invariant definition uses the keyword inv. In section 3.7 we introduced the idea
of function signatures. In the case of an invariant function, inv, its signature will be:

inv: State → �

The function maps a value of the state onto a boolean – either TRUE or FALSE; and by
specifying such a function we are saying that the state variables must be such that 
the result of the function is TRUE. For the IncubatorMonitor system the invariant is 
specified as:
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inv mk-IncubatorMonitor(t) 	 MIN � t � MAX

After the keyword inv, we have the expression mk-IncubatorMonitor(t), which
effectively is the input to the inv function. This expression is itself a function, and is
known as a make function (the mk is pronounced ‘make’). You will find out more
about make functions in Chapter 9, but for now you just need to know that their pur-
pose is to construct an object – in this case an IncubatorMonitor – from the values in
the parameter list in the brackets. The parameter names are arbitrary; they are
matched, in order, to the components of the state. In our case there is only one com-
ponent, temp. As you have seen, the symbol 	 is read ‘is defined as’, and on the right
of this symbol we place the predicate that the input parameters must satisfy. In this
case it is that the temperature lies between �10 and �10� celsius (MIN and MAX as we
have defined them), hence the expression MIN � t � MAX, on the right-hand side of
the ‘is defined as’ symbol.

This discussion of the invariant gives us our first opportunity to think about the idea
of mathematical proof and integrity checking in connection with software develop-
ment. One of the integrity checks that we should undertake is to show that none of
our operations violates the invariant; in our example this means that none of 
our operations ever raises the temperature above 10� celsius or decreases it below
�10� celsius. In a simple system such as this it would not be worth the effort of 
writing a formal proof for each operation – it is good enough to provide a rigorous
argument. In the increment operation, for example, we can argue that because the



precondition states that the temperature must be below 10 degrees before the opera-
tion can take place, this means that the temperature will never rise above 10 degrees
as a result of this operation. A similar argument can be provided for the decrement
operation. Of course, we have to take account of the possibility of violating the invari-
ant only in the case of operations that have write access to the state – an operation
such as getTemp, which has read-only access, cannot change the values of the state
variables, and therefore cannot violate the invariant.

In the next chapter you will see how these integrity checks can be incorporated into
a program.

3.9 Specifying an Initialization Function
You may already have identified one of the shortcomings of the above specification,
namely that we have not yet made any statement about what the value of the temper-
ature should be when the system is first brought into being. It is all very well having
operations that increment and decrement the temperature, but if we do not know
what the initial value of the temperature was, then they are not very meaningful. We
can solve this problem by specifying an initialization function, which is given the
name init. This function is specified after the declaration of the invariant, and pre-
scribes the conditions that the system must satisfy when it is first brought into being.

Let us illustrate this with our IncubatorMonitor example. We will assume that the
system works in the following way: when the incubator is turned on, its temperature
is adjusted until a steady 5� celsius is obtained. At this point the software system is
activated. Thus, our initialization function should state that when the system is first
invoked, the temperature should be set to 5.

We write the initialization function like this:
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init mk-IncubatorMonitor(t) 	 t � 5

This is similar in style to the invariant function, and has the same signature; 
the interpretation in this case is that the expression on the right-hand side of the 
	 symbol defines the conditions that must be true after the system is first brought into
being.

It is very important to note that the initialization function – as with the operations –
must preserve the invariant. Once again, in our example, we are able to argue that
since this function sets the temperature to 5 degrees, which is within the constraints
allowed, the invariant is not violated.

3.10 User-defined Types
So far we have seen four components of a complete VDM-SL specification – the decla-
ration of constants, the state definition (along with an invariant and initialization
function), functions and operations. At the end of this chapter we present the 
complete template for a VDM-SL specification, and you will see there that the above
components are presented in that order. There is one more component to the specifi-
cation, which must come at the beginning. This is the declaration of any user-defined



types that we are going to use in the remainder of the specification. You will see how
this is done in section 3.12.

3.11 The nil Value
In the next section we are going to look at a more complex – and more useful – 
version of our incubator system. Before we do that, there is one more concept that we
need to introduce to you, namely the idea of a nil value.

In Chapter 2 we noted that it was common in the programming world for a value to
be undefined. VDM-SL allows for this concept by including the possibility of a term or
expression having the value nil, meaning that it is undefined. Of course, if we want to
allow for this possibility, then we need to slightly modify the type of the variable. We
do that by placing square brackets around the type name – for example [�] or [�] –
meaning that a variable of that type can take the value of nil. Effectively we are
extending the type to include the nil value.

3.12 Improving the Incubator System
In order to introduce these new concepts to you, we made our first system very 
simple indeed – the software simply recorded information about the temperature of
an incubator. Let us now make the software more realistic.

In our enhanced system, the software will not only record the current temperature
of the system, but will also control the hardware. The system will be able to respond
to a request from the user to change the temperature, and subsequently to signal the
hardware to increase or decrease the temperature accordingly. The hardware itself
will still operate in such a way as to either increment or decrement the temperature of
the incubator, and to signal the software each time that a change of one degree has
been effected. When the software receives such a signal it must, in addition to record-
ing the new temperature, send back a response, telling the hardware whether or not
further changes are required to achieve the temperature that has been requested.

Our new system will also behave a bit more realistically in regard to the initial 
temperature of the incubator. In this new system, the temperature of the incubator
will not be recorded until a message is received from the hardware; other operations
on the system will not be able to go ahead until the initial temperature is set.

You will probably already have worked out that it will be necessary for the software
to record both the actual temperature of the system and the requested temperature;
we will also need some additional operations. Figure 3.2 shows the UML diagram for
our new software.

You will notice that three of the operations (requestChange, increment and decre-
ment) have an output of type Signal. This is not a standard UML type such as Integer.
The internal details of this Signal class are relevant to the specification of the
IncubatorMonitor class so it needs to be analysed further before proceeding to the 
formal specification.

The signal that must be sent to the hardware could be one of three possible values:
either instructing the hardware to increase the temperature, decrease the tempera-
ture or do nothing. A type that consists of a small number of named values is often
referred to as an enumerated type. A standard method of marking a UML class as an
enumerated type is to add ��enumeration�� above the type name. The possible
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values of the type are then listed below the type name and the method compartment
is left blank. The UML specification of the Signal type is given in Figure 3.3.

We turn now to the formal VDM specification of the IncubatorController class. As we
mentioned in section 3.10, user-defined types such as Signal can also be defined in 
a VDM specification. The types clause is the appropriate place to define new types.
The Signal type is defined as follows:

36 Formal Software Development

<<enumeration>>
Signal

INCREASE

DECREASE

DO_NOTHING

Figure 3.3 UML specification of the Signal type

types

Signal � �INCREASE�|�DECREASE�|�DO_NOTHING�

IncubatorController

requestedTemp : Integer

actualTemp : Integer

setInitialTemp(Integer)

requestChange(Integer) : Signal

increment() : Signal

decrement() : Signal

getRequestedTemp() : Integer

getActualTemp() : Integer

Figure 3.2 The specification of the IncubatorController

Here we are defining a type by type construction. This form of type construction
allows enumerated types to be specified formally in VDM-SL. Values such as
�INCREASE�, �DECREASE� and �DO_NOTHING� are called quote types, and a type such
as Signal is a union of quote types in VDM. A quote type defines a single value, 
and at the same time defines a type containing just that value. These quote types 
correspond to the values specified in the UML diagram of Figure 3.3. Note that, by
convention, type names begin with an upper-case letter.



We can now proceed with the re-specification of our new IncubatorController
system in VDM-SL.

3.13 Specifying the State of the IncubatorController System
As we have indicated in the previous section, there now need to be two components of
the state – one to hold the actual temperature, and one to hold the temperature that
has been requested. Now, as we stated above, when the system first comes into being
these values will be undefined, and must therefore be set to nil. As we explained in
section 3.11 this means that the type of these values will be written as [�] rather than
�. So our new state definition now becomes:
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state IncubatorController of

requestedTemp : [�]

actualTemp : [�]

inv mk-IncubatorController (r, a) 	

(MIN � r � MAX � r � nil) � (MIN � a � MAX � a � nil)

inRange(val: �) result : �

pre TRUE

post result ⇔ MIN � val � MAX

The purpose of this function is to check whether an integer value, val, is within the
range MIN and MAX as defined earlier. You can see that the use of the equivalence
connective ensures that the output is true if the input is in range, but is otherwise
false.

Now we can use this function in the invariant, which we can rewrite as:

Notice that now there are two inputs to the make function.
In section 3.7, we discussed the use of functions in VDM. The above invariant 

provides us with an opportunity to illustrate this point. Let us define a function
inRange as follows:

Now for the invariant. As before, the actual temperature must not be allowed to go
outside the range of �10 to �10 degrees; however we need to allow for the possibil-
ity that it could be equal to the nil value. Exactly the same is true for the requested
temperature. This gives us an invariant comprising two conjuncts:

inv mk-IncubatorController (r, a) 	 (inRange(r) � r � nil) � (inRange(a) � a � nil)



This makes the invariant much more readable, and also has the advantage that we can
re-use our function throughout the specification, as we shall see in a moment.

Next we need to think about our initialization function. Since both the requested
temperature and the actual temperature will be undefined at the point when the sys-
tem is created, these should both be set to nil. Hence the initialization function is:
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init mk-IncubatorController (r, a) 	 r � nil � a � nil

3.14 Specifying the Operations for the IncubatorController System
As we explained in section 3.12, it is going to be necessary to provide an operation that
can be used to set the initial temperature of the system – this will be invoked by the
hardware when the incubator has established a steady initial temperature. It is very
important not to confuse this with the initialization clause. The initialization clause is
simply a function that states the conditions that must exist when the system first
comes into being – it is not an operation that can be invoked during the system’s life
time, whereas the setInitialTemp operation that we are now specifying can, of course,
be invoked once the system has been created.

The operation is specified below:

setInitialTemp(tempIn : �)

ext wr actualTemp : [�]
pre inRange(tempIn) � actualTemp � nil

post actualTemp � tempIn

This time we have an operation that requires an input parameter, which, as you 
can see, is placed in the brackets after the operation name. Notice that we need read-
write access to the actualTemp component of the state, but do not need access to
requestedTemp.

The precondition is interesting. You can see that there are two parts to it. The first
of the two conjuncts is effectively validating the input – if the input value is out of
range, then the behaviour of the system for this operation is not defined; notice the
use of our inRange function here. The second part ensures the actual temperature of
the incubator has a value of nil, which will be the case immediately after the system
has come into being. Once the temperature has been set, the temperature has an
actual value, and this operation could not take place again unless some other opera-
tion set the temperature back to nil; and since no such operation is provided, this
means that the operation can be performed only once.

The postcondition is straightforward: the value of the output should be equal to
that of the current temperature.

Now let us consider the requestChange operation. Remember that its purpose is to
record the value of the temperature that has been requested by the user of the system,



and to signal the hardware to take the appropriate action in order to bring about the
change.

It will therefore require an input of an integer, and will result in an output of type
Signal (refer again to Figure 3.2).

The operation is specified as follows:
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requestChange(tempIn : �) signalOut : Signal

ext wr requestedTemp : [�]

rd actualTemp : [�]

pre inRange(tempIn) � actualTemp � nil

post requestedTemp � tempIn �

(tempIn � actualTemp � signalOut � �INCREASE�

� tempIn � actualTemp � signalOut � �DECREASE�

� tempIn � actualTemp � signalOut � �DO_NOTHING�)

pre inRange(tempIn) � actualTemp � nil

(tempIn � actualTemp � signalOut � �INCREASE�

� tempIn � actualTemp � signalOut � �DECREASE�

� tempIn � actualTemp � signalOut � �DO_NOTHING�)

The first item to which we draw your attention is the external clause. We need
access to both components of the state, but the mode of access is different in each
case. In the case of requestedTemp, it will be necessary to have write access to this 
component because we must record the temperature that has been requested. In the
case of actualTemp, the operation is not going to change this value, but needs read
access in order to compare it to the requested temperature and thence determine the
action that must be taken by the hardware.

The precondition is similar to that of the previous operation:

However, in this case we are checking that the actual temperature is not undefined,
thus ensuring that the initial temperature had been properly set.

The postcondition might at first glance appear rather more complex, but in fact 
it is very simple to unravel. It consists of two conjuncts, the first of which simply states
that the requested temperature must be equal to the value that was input into the
operation. The second conjunct looks like this:



It deals with the value of the signal that is sent out. You can see that it consists of
three disjuncts, each of which deals with a different case – the first when the input tem-
perature is greater than the actual temperature, the second when it is less than the
actual temperature, and the third when it is equal to the actual temperature. The fact
that they are ‘OR-ed’ means that only one has to be true to make the compound state-
ment true – and indeed, logically, only one of these can be true at any one time. So if,
for example, the input temperature were greater than the actual temperature, then for
the whole statement to be true, the output signal must be equal to INCREASE – and simi-
larly for the other two disjuncts. Once again the nature of this postcondition should
bring home the fact that postconditions are predicates, not assignment statements!

Now for the new version of the increment operation:
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increment () signalOut : Signal

ext rd requestedTemp : [�]

wr actualTemp : [�]

pre actualTemp � requestedTemp � actualTemp � nil � requestedTemp � nil

post actualTemp � actualTemp � 1 �

(actualTemp � requestedTemp � signalOut � �INCREASE�

� actualTemp � requestedTemp � signalOut � �DO_NOTHING�)

The operation header and the external clause should not require further 
explanation.

The precondition consists of three conjuncts. The first of these checks that the 
actual temperature is less than the requested temperature (otherwise we should 
not increment it). Since all operations must preserve the invariant we can assume 
that the requested temperature will not be greater than MAX, so this conjunct 
automatically checks that the actual temperature is less that the maximum allowed
temperature. The second and third conjuncts check that an initial and requested tem-
perature have been set.

Here again the postcondition has to deal with the value of the signal output as 
well as dealing with the need to increment the actual temperature. In this operation,
however, there are only two alternatives, as the possibility of the actual tempera-
ture being greater than the requested temperature has been eliminated by the 
precondition.

The decrement operation is similar and does not require further explanation.
Finally we need to provide read operations for the requested temperature and the

actual temperature:

getRequestedTemp() currentRequested : [�]

ext rd requestedTemp : [�]

pre TRUE

post currentRequested � requestedTemp
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getActualTemp() currentActual : [�]

ext rd actualTemp : [�]

pre TRUE

post currentActual � actualTemp

3.15 A Standard Template for VDM-SL Specifications
We are now in a position to provide a generalized template for a VDM-SL specifica-
tion; any specification that we now present will conform to this template, which is
shown in Figure 3.4. You should note that not every clause would necessarily appear
in every specification.

3.16 Including Comments
As with program code, the readability of a VDM-SL specification is greatly enhanced
by the inclusion of comments. This is done by introducing the comment with the 
symbol – –. A new line ends the comment. Examples are provided in the next section.

3.17 The complete specification of the 
IncubatorController system

We conclude this chapter by presenting the complete specification of the Incubator
system, which you can see conforms to the standard template that we provided in 

types
    SomeType = …..

values
    constantName : ConstantType = someValue

state SystemName of
    attribute1 : Type
 :
     :
    attributen : Type

end

functions
    specification of functions .....

operations
    specification of operations .....

inv mk-SystemName(i1:Type, ..., in:Type) ∆ Expression(i1, ..., in )
init mk-SystemName(i1:Type, ..., in:Type) ∆ Expression(i1, ..., in )

Figure 3.4 The standard template for VDM-SL specifications



the previous section:

42 Formal Software Development

types
Signal � �INCREASE�|�DECREASE�|�DO_NOTHING�

values
MAX : � � 10
MIN : � � �10

state IncubatorController of
requestedTemp : [�]
actualTemp : [�]
–– both requested and actual temperatures must be in range or equal to nil

inv mk-IncubatorController (r, a) 	 (inRange(r) � r � nil) � (inRange(a) �

a � nil)
–– both requested and actual temperatures are undefined when the system is initialized

init mk-IncubatorController (r, a) 	 r � nil � a � nil

end

functions
inRange(val : �) result : �
pre TRUE

post result ⇔ MIN � val � MAX

operations
–– an operation that records the intitial temperature of the system

setInitialTemp(tempIn : �)
ext wr actualTemp : [�]
pre inRange(tempIn) � actualTemp � nil
post actualTemp � tempIn
– – an operation that records the requested temperature and signals the hardware to increase
– – or decrease the temperature as appropriate

requestChange(tempIn : �) signalOut : Signal
ext wr requestedTemp : [�]

rd actualTemp : [�]
pre inRange(tempIn) � actualTemp � nil
post requestedTemp � tempIn �

(tempIn � actualTemp � signalOut � �INCREASE�
� tempIn � actualTemp � signalOut � �DECREASE�
� tempIn � actualTemp � signalOut � �DO_NOTHING�)

– – an operation that records a one degree increase and instructs the hardware 
– –either to continue increasing the temperature or to stop
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increment () signalOut : Signal
ext rd requestedTemp : [�]

wr actualTemp : [�]
pre actualTemp � requestedTemp � actualTemp � nil � requestedTemp � nil

post actualTemp � actualTemp � 1 �
(actualTemp � requestedTemp � signalOut � �INCREASE�
� actualTemp � requestedTemp � signalOut � �DO_NOTHING�)

– – an operation that records a one degree decrease and instructs the hardware 
– – either to continue decreasing the temperature or to stop

decrement () signalOut : Signal
ext rd requestedTemp : [�]
wr actualTemp : [�]
pre actualTemp � requestedTemp � actualTemp � nil � requestedTemp � nil

post actualTemp � actualTemp � 1 �
(actualTemp � requestedTemp � signalOut � �DECREASE�
� actualTemp � requestedTemp � signalOut � �DO_NOTHING�)

getRequestedTemp() currentRequested : [�]
ext rd requestedTemp : [�]
pre TRUE

post currentRequested � requestedTemp

getActualTemp() currentActual : [�]
ext rd actualTemp : [�]
pre TRUE

post currentActual � actualTemp

1. Consider the IncubatorController system from this chapter. Specify an operation, 
isEqual, which reports on whether or not the actual temperature is equal to the
requested temperature.

2. (a) Provide both an explicit and an implicit definition for a VDM function that accepts
two integers as input and outputs the greater of the two; if both integers are of
equal value, the function should output this value.

(b) Adapt the function so that it accepts only numbers that are unequal.
3. Consider a system that records the current mode of an industrial robot, which can

either be working, idle or broken.
(a) Declare a type, Mode, for use in the specification.
(b) Write the specification of the state of the system, including an initialization function

that ensures that the robot is set to idle when the system first comes into existence.
(c) Write specifications for the following operations:

(i) An operation called setMode that accepts and records a value for the mode of
the robot.

(ii) An operation called getMode that outputs the current mode of the robot.
(iii) An operation called isIdle that checks whether or not the robot is idle.

(d) Modify the setMode operation so that the mode of a robot cannot be changed
directly from broken to working.

EXERCISES
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4. Software is required to monitor the position of a land-craft that is undertaking inves-
tigative work on a distant planet by scanning the surface for the existence of a partic-
ular mineral. The particular section of the planet surface under investigation is thought
of as being divided into a two-dimensional grid consisting of 10 rows and 10 columns.
The scanning system of the craft can be on or off at any time, but must not be on when
the craft is anywhere in the first row of the grid. When the application comes into
being, the craft will always be located in the cell corresponding to row 1, column 1.

The software should be capable of recording the position of the module, recording
and reporting on the status of the scanner, and reporting on the row currently occu-
pied and the column currently occupied. The UML diagrams for the LandCraft class,
and the Status type are shown below:

<<enumeration>>
Status

ON
OFF

LandCraft

row: Integer

column: Integer

status: Status

recordPosition(Integer, Integer)

recordStatus(Status)

showStatus(): Status

showRow(): Integer

showColumn(): Integer

Specify the software in VDM-SL.



CHAPTER 4
From VDM Specifications 
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4.1 Introduction
In this chapter we will explore ways in which to implement a VDM specification in
Java. We begin by looking at some key features of the Java programming language
that make it suitable for the implementation of VDM specifications. We then go on to
look at some general guidelines for translating a VDM specification into Java while
developing implementations of the Incubator specifications of the previous chapter.

4.2 Java
Formal methods are used to help ensure the reliability of a software product. The pro-
gramming language can also have a bearing on the reliability of the final program. For
example, languages with strong type checking help identify and remove many errors
before run-time. We have chosen Java as our language for the following reasons:

● Java is object-oriented This allows programs to be developed by defining classes
that have encapsulated attributes, and public methods. This encapsulation of data
allows secure systems to be built with less chance of data corruption. As you have
already seen, a VDM specification corresponds very closely to the idea of a class, so
an object-oriented programming language is an obvious choice for implementing
VDM specifications.

● Java is portable Because Java classes are compiled down to byte code rather than
platform-specific machine code, final applications can run successfully on any plat-
form that incorporates a Java Virtual Machine. In particular, calculations and eval-
uation of expressions return identical results regardless of platform. For example,
the range of an integer variable in C will differ depending upon whether or not the
language is compiled on a 16 or 32 bit platform, whereas the range for an integer
variable in Java is common across all platforms. This is obviously important for the
development of any high integrity software.

● Java is robust Certain programming features that are commonly associated with
software errors in other languages are not part of the Java programming language.
In particular Java does not support pointers and multiple inheritance. These features
can result in software failure because their use requires considerable skill and they
have a complex semantics. In particular, they make it harder to analyse a program
for correctness, whether by inspection, proof or testing. In addition to this, Java’s
garbage collection removes the memory management burden on programmers



(another common source of programming errors) and a comprehensive exception
handling mechanism allows programs to deal safely with unexpected behaviour.
While features such as pointers and manual memory management are sometimes
necessary when resources are limited, program reliability is greatly improved by
removing such error-prone constructs and incorporating such additional features.

● Java is high level When developing applications from VDM specifications, it
helps considerably if the types available in the specification language are also avail-
able in the implementation language. So far we have only shown you the simple
types available in VDM-SL but over the coming chapters we shall look at the
abstract collection types (such as sets and maps) available in VDM-SL. These
abstract types are much higher level than traditional low-level programming col-
lection types such as arrays and linked lists. This allows for very concise specifica-
tions. In addition to low-level collection types such as arrays, Java also offers its
own high-level collection classes such as vectors and hash tables. These collection
classes very closely resemble the abstract collection types of VDM-SL and allow for
relatively concise implementations from VDM specifications.

For these reasons Java is a good choice for implementing VDM specifications. 
Of course, the language was not designed with this purpose in mind, so there are
times when the translation process needs to be smoothed by providing additional 
utility classes. These classes, which we have developed, can be downloaded from the
accompanying website. We will discuss them as and when we need to use them.

4.2.1 FORMAL DEVELOPMENT OF JAVA PROGRAMS: A LIGHTWEIGHT APPROACH
As we described in Chapter 1, the approach we will be taking to formal program devel-
opment is one that is often referred to as a lightweight approach. Here, formality is
applied with a light rather than rigorous touch. Important consistency checks, which
can be derived from the formal specification, will be checked at run-time once an
implementation has been derived, rather than by means of a formal proof before an
implementation is developed. This reduces the formal obligations on the developer
while maintaining important consistency checks on the final running system.

Throughout this chapter, and the rest of this book, we provide you with a light-
weight method of developing Java programs from VDM specifications. While the final
Java programs produced can be used to help validate the original specification, this
should not be viewed as the primary role of the translation. Indeed, if this is the sole
aim then VDM interpreters (such as the IFAD VDM-SL Toolbox1) are commercially
available where VDM specifications can be executed directly for testing purposes
without the need to translate into an intermediate programming language such as
Java first. While these interpreters are useful for specification validation, however, a
final system will still need to be developed in a programming language and it is this
stage that we address in the method presented. We do not consider issues such as pro-
gram efficiency or the user interface here – these are aspects you might wish to
improve when developing a final implementation. We assume that you are already
familiar with programming in Java. A coverage of some of the more advanced features
that we utilize (such as exceptions and anonymous classes) can also be found in the
appendix on the accompanying website.
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1 For more information on this tool visit http://www.ifad.dk/.



4.3 From VDM-SL Types to Java Types
Up to this point we have presented you with the basic types of VDM-SL: integers, 
natural numbers, real numbers, booleans and characters. Java has several primitive
(non-class) types that can be used to provide a concrete representation of these
abstract types. Table 4.1 provides suitable primitive Java types for these VDM-SL types.
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Table 4.1 From VDM-SL base
types to Java primitive types

VDM-SL type Java type

� int
�1 int
� int
� double
� boolean
Char char

2 In addition, care needs to be taken that a zero value is not allowed for variables declared to be of
type �1 in VDM-SL.

3 If these number ranges are not sufficient then the Java classes BigInt and BigDouble can be
used for integers and real numbers with no upper or lower limit.

values

MAX : � � 10
MIN : � � �10

As you can see from Table 4.1, Java does not provide distinct types for natural 
numbers and integers. The int type provides for both negative and positive whole
numbers so can be used whenever variables are declared in VDM-SL to be of type �,
�1 or �. Care needs to be taken, however, when the int type is being used to model
the natural number types, since negative numbers are not allowed.2 We will see
examples of this later in the book.

It is also important to bear in mind that, while VDM-SL number types have no 
upper or lower limits to their size, upper and lower limits are placed on the primitive 
number types of Java (�2 147 483 648 to 2 147 483 647 for the int type and
�/�4.9 � 10�324 to 1.8 � 10308 for the double type). For the purposes of most
applications these number ranges will be sufficient.3 Let us now take a look at the
implementation of a VDM specification into Java.

4.4 Implementing the IncubatorMonitor Specification
In Chapter 3 we considered a system that monitored the temperature of an incubator.
The system was specified formally in VDM-SL as follows:



A VDM specification will be implemented in Java as a class. So a class called
IncubatorMonitor is to be developed in Java:
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state IncubatorMonitor of

temp : �

inv mk-IncubatorMonitor(t) � MIN � t � MAX

init mk-IncubatorMonitor(t) � t � 5

end

operations

increment( )

ext wr temp : �

pre temp � MAX

post temp�temp�1

decrement( )

ext wr temp : �

pre temp � MIN

post temp�temp�1

getTemp( ) currentTemp : �

ext rd temp : �

pre TRUE

post currentTemp � temp

class IncubatorMonitor
{

// code goes here

}

The VDM specification consists of a values clause, a state clause, invariant and ini-
tialization functions and operation specifications. We will look at these in turn.
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4.4.1 TRANSLATING A VALUES CLAUSE INTO JAVA
Constants defined in the values clause of the VDM specification can be implemented
as constant attributes of the Java class. It is useful to declare constant class values as
public – allowing access to them outside of the class.

Notice how the Java int type was used to provide a concrete representation of the
VDM-SL integer type (�). The VDM-SL convention of naming constants in upper case
is also common to Java programs.

VDM-SL Java

values

MAX : � � 10 public static final int MAX � 10;

MIN : � � �10 public static final int MIN � �10;

4.4.2 TRANSLATING A STATE CLAUSE INTO JAVA
The state attributes of the VDM specification constitute the hidden data members of the
specified software. As such they correspond to the private attributes of a Java class:

Again, the convention of starting attribute names with a lower-case letter is common
to both VDM-SL and Java.

4.4.3 TRANSLATING AN INVARIANT INTO JAVA
The invariant is a record of a global constraint on the software being specified. It can
be implemented in Java as a (public) method that returns a boolean result. A
result of TRUE would indicate that the invariant has been met and a result of FALSE

would indicate that it has not been met. Here is the translation:

VDM-SL Java

state IncubatorMonitor of

temp : �
private int temp;

VDM-SL Java

inv mk-IncubatorMonitor(t) 	 MIN � t � MAX public boolean inv ()

{

return (MIN �� temp && temp �� MAX);

}
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As you can see, the Java method returns the result of the boolean expression spec-
ified in VDM-SL. It is important to remember to always refer to the full attribute name
(temp) in the Java code.

The implementation of an invariant method in the Java class is not essential, but 
it allows important run-time consistency checks to be carried out. It is useful to 
mark a class as having such a check available. To allow for this, we have defined an
InvariantCheck interface as follows:

The InvariantCheck interface

interface InvariantCheck

{

public boolean inv();

}

class IncubatorMonitor implements InvariantCheck

{

public boolean inv()

{

return (MIN �� temp && temp �� MAX);

}

// more code here

}

4 At the moment we are only comparing primitive values. When we compare objects we will have
to use object methods such as equals for comparisons.

We will demonstrate how this invariant can be checked later in this chapter. As 
can be seen in the IncubatorMonitor invariant, VDM-SL tests may consist of com-
parison and logical operators. Table 4.2 gives the Java equivalent to the comparison
operators.4

Classes, such as IncubatorMonitor, that contain an invariant method can then
claim to implement this interface:
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Table 4.3 gives the Java equivalent to the basic logical operators.
Care has to be taken when using the conjunction and disjunction operators in Java.

Unlike their VDM-SL counterparts, the order in which they appear can be significant
when using these operators in Java. This is the case when one of the operands may
possibly be undefined.

We discussed, in Chapter 2, how classical logic can be extended to deal with 
undefined terms. Consider the following VDM-SL expression involving a conjunction:

x 
 y � 1 � y ≠ 0

Since zero divided by zero is undefined, the expression would resolve to the following
if both x and y were equal to zero:

UNDEFINED � FALSE

This in turn would resolve to FALSE. An undefined term used in a programming expres-
sion, however, can cause that program to fail. It would be unwise to implement this
test as follows:

x/y � 1 && y!� 0

An attempt would be made to evaluate the first conjunct. If y and x were both zero,
this would be an undefined expression5 causing a division-by-zero exception6 and 
possible program termination!

Table 4.2 Comparison operators

VDM-SL Java

a � b a �� b
a ≠ b a !� b
a � b a � b
a � b a � b
a 
 b a �� b
a � b a �� b

5 In fact, only the value of y need be zero for the expression to be undefined in Java.
6 An exception is an object that is generated when an error occurs. If left undealt with such an

exception object can cause program termination.

Table 4.3 Logical operators

VDM-SL Java

a � b a & & b
a � b a || b
¬ a !a
a ⇔ b a �� b
a ⇒ b (!a) || b
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Fortunately, Java has what is known as lazy evaluation. This means that once the first
operand is evaluated, if the outcome of the expression can be determined the second
operand is not evaluated. In the case of disjuncts, if the first operand evaluates to TRUE

the whole expression evaluates to TRUE without having to evaluate the second operand.
In the case of conjuncts, if the first operand evaluates to FALSE the whole expression
evaluates to FALSE without having to evaluate the second operand. For this reason it is
wiser to place the potentially undefined conjunct second in the expression as follows:

y! � 0 && x/y � 1

Now, if the value of y is equal to zero the first conjunct will resolve to FALSE, which in
turn will resolve the whole expression to FALSE without the need to evaluate the sec-
ond potentially undefined expression. Essentially all this means is that potentially
undefined operands should always be placed second in an expression.

4.4.4 THE VDM CLASS
If you look back at Table 4.3, you can see that the implication operator (⇒) has no
direct counterpart in Java. Instead, the implication can be translated into an equivalent
expression involving NOT and OR operators.7 However, in order to smooth the trans-
lation process and avoid having to translate implications in this way, we have provided
a utility class (called VDM) that contains, in addition to several other methods, an
implies method (see Table 4.4). This class can be downloaded from the website.

Table 4.4 Methods of the VDM class

Method Description

implies Implementation of the implication (⇒) operator

forall Implementation of the universal quantifier (�)

exists Implementation of the existential quantifier (∃)

uniqueExists Implementation of the unique existential quantifier (∃!)

preTest Checks a precondition and throws an exception if
the precondition is broken

postTest Checks a postcondition and throws an exception
if the postcondition is broken

invTest Checks the invariant of an object and throws an exception if the 
invariant is broken

7 The following equivalence holds: A ⇒ B � ¬ A � B.

The methods listed in Table 4.4 are all class methods, so they are invoked with the
class name. Here is an example of how the implies method might be used:

VDM-SL Java

x � y ⇒ y � x � 1 VDM.implies(x � y, y �x � 1)
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The implies method behaves in exactly the same was as the implies operator (⇒). It
receives two boolean expressions and returns TRUE if the first implies the second and FALSE

otherwise. The obvious code for the implies method in our utility class is given as follows:

public static boolean implies (boolean a, boolean b)

{

return ((!a)||b);

}

public IncubatorMonitor()

{

// initialization code goes here

}

temp � 5;

After this assignment, temp will be equal to 5 and the initialization predicate will be
satisfied. Throughout this text we will treat this as an assignment axiom (a rule that
does not have to be proven). That is, after an assignment in Java of the following form:

x � y;

Of course, the initialization clause of the VDM specification indicates what condition
must hold after the initialization is complete – it does not indicate how to achieve this.
We are asked to ensure that the temperature is equal to 5 upon initialization.

init mk-IncubatorMonitor (t) 	 t � 5

Once again, it is important to be careful that the attribute name (temp) is used in
the code for the Java constructor, not the name that is pattern matched to this attribute
in the VDM specification (t). The obvious way to satisfy the initialization equality is
with an assignment to the attribute temp.

We will demonstrate the use of this and the other methods in the VDM class through-
out this text.

4.4.5 TRANSLATING THE INITIALIZATION CLAUSE INTO JAVA
The initialization clause of the VDM specification defines valid initial values for attrib-
utes of the corresponding class. A constructor is the mechanism used to initialize class
attributes in Java. The initialization clause in VDM receives no outside parameters so
we need to develop a parameterless constructor in our Java class:



(where y is any expression) the following equality will hold:

x � y

Note that if the assignment expression, y, makes reference to the assigned variable x,
then the equality that holds will be with respect to the old value of x. So, for example,
after the following assignment in Java:

x = 2 � x;

The following equality will hold

x � 2 � x;

This assignment axiom is the only formal proof rule that we will use to argue pro-
gram correctness. As we are using a lightweight approach to program development,
we will just argue the correctness of other aspects of the final program and rely upon
run-time integrity checks to trap any errors that might have been made.

One very important integrity check in VDM is that the initial state respects the state
invariant (we know this class has an invariant because we have marked the class 
as implementing the InvariantCheck interface). It is useful to incorporate 
this check into the constructor. As noted in Table 4.4, we have included an invTest
method in our VDM class to check whether or not the invariant holds on a given
object. The parameter of this method must be an object that implements the
InvariantCheck interface. Since objects of this IncubatorMonitor class imple-
ment the InvariantCheck interface we can send in this object to the method.

The invTest method checks the invariant method defined for the given object. If
the invariant holds, no action is taken by the method, but if the invariant has been bro-
ken this method throws an exception. We have created our own exception class
(VDMException) for this purpose so that exceptions generated by VDM implemen-
tations can be distinguished from exceptions that arise from other sources in your
final program. We have made VDMException an unchecked exception class (mean-
ing that callers of this method are not obliged to acknowledge that the method might
throw an exception). When we discuss program testing later in this chapter we will
show you one way of dealing with such exceptions. Here then is the complete transla-
tion of the initialization function:
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VDM.invTest(this);

VDM-SL Java

public IncubatorMonitor()

init mk-IncubatorMonitor (t) 	 t � 5 {

temp � 5;

VDM.invTest(this);

}
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This completes the translation of the state specification. Now we turn to the operation
specifications.

4.4.6 TRANSLATING OPERATION SPECIFICATIONS INTO JAVA
VDM operations amount to the public interface of the system. The public interface of
a class consists of its public methods, so each VDM-SL operation will correspond to
a public Java method within the class. Consider the following translation of the
increment operation and then we will discuss it:

VDM-SL Java

increment( ) public void increment()

ext wr temp : � {

pre temp � MAX VDM.preTest(temp � MAX);

post temp � temp � 1 temp � temp � 1;

VDM.invTest(this);

}

VDM-SL Java

increment( ) public void increment()

The inputs and outputs
It is clear that the inputs and outputs of the Java method are determined directly from
those of the VDM operation – in this case there are none:

The ext clause
Java methods have write and read access to all state attributes and this access cannot
be restricted as in the VDM-SL ext clause. Consequently there is no corresponding
part to the ext clause in the Java method. However, the ext clause does have an influ-
ence on the way we implement the method. Earlier we discussed an important
integrity check in VDM – that the initial state satisfies the invariant. Another impor-
tant integrity check is that all operations also respect the invariant. If an operation has
write access to the state, the invariant could potentially be broken. The increment
method has write access to the temp attribute, so we have included an invariant check



at the end of this method to help ensure that the method preserves the invariant:
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VDM-SL Java

pre temp � MAX VDM.preTest(temp � MAX);

VDM-SL Java

post temp � temp � 1 temp � temp � 1;

8 At time of writing, a version of Java has been released that includes an assert statement.
This statement behaves in a very similar way to our preTest and invTest (and postTest)
methods. Like the methods provided in our VDM class, the assert statement throws an exception
when a test fails. You might wish to use this statement in place of the methods in our VDM class.

VDM-SL Java

ext wr temp : � // rest of method here

VDM.invTest(this);

The precondition
You will recall that the responsibility for ensuring that the precondition is met lies
with the caller of the method. If it has been met then the operation can go ahead. If
the precondition is not met the behaviour of this operation is not specified. We have
decided that, in this circumstance, it is safest to throw an exception to alert the caller
of this method that something has gone wrong. This provides the caller of the method
with the opportunity of checking if the precondition is met by trapping the exception
within a try … catch block (as we will demonstrate in the next section). As listed 
in Table 4.4, we have provided a method (preTest) in our utility class for testing the
precondition.

If the precondition does not hold the method throws a VDMException. If the precon-
dition does hold, no exception is thrown and the operation can proceed to implement
the postcondition.8

The postcondition
The main body of the method is concerned with implementing the equality in the
postcondition. This has been implemented by the single assignment statement:



Again, remember the postcondition states what must be satisfied upon successful
completion of the operation, not how. The assignment axiom ensures that, after this
assignment, temp is one greater than the old value of temp required by the postcondition.

The decrement operation
Using the guidelines given above, the decrement operation can be translated in a 
similar way:
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VDM-SL Java

decrement() public void decrement()

ext wr temp : � {

pre temp � MIN VDM.preTest(temp � MIN);

post temp � temp � 1 temp � temp � 1;

VDM.invTest(this);

}

VDM-SL Java

getTemp( ) currentTemp : � public int getTemp()

ext rd temp : � {

pre TRUE return currentTemp;

post currentTemp � temp }

The getTemp operation
The getTemp operation has been implemented as follows:

The Java method returns an integer as determined by the VDM-SL operation
header. Notice that, while a name is given to the output in the VDM-SL header, no
name is associated with the Java return type.

You should be aware that the exception object returned by the assert statement will not, unlike
our VDM methods, reveal whether a precondition or an invariant (or a postcondition) has been
broken. This must be determined by program inspection.



You can see that, since the precondition is TRUE, there is no need to run a precondi-
tion test in the Java method. The postcondition indicates that the value returned by
this method must be equal to the temp attribute. When an operation is to send back
an output, a return statement must be used for this purpose in the associated Java
method:
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public String toString() // this is the standard interface for the toString method

{

return “temp � “ � temp;

}

There is no need to test the invariant here as this method does not write to the state.
In addition to the methods specified in the VDM specification, it is often useful (for

testing purposes) to include a method that returns a string representation of the class
attributes. A standard way of doing this in Java is to redefine (override) the
toString method that all classes inherit from the Object class. The Object class
is a super superclass from which all Java classes are derived. In this class, such a
method will not be that useful as there is only a single attribute (temp) and we have
already provided read access to this attribute. If we were to define such a method,
however, we could do so as follows:

return temp;

When implementing a VDM specification as a Java class we will always provide a
toString method.

4.5 Testing the Java Class
Eventually this class will need to interact with the hardware components of the 
incubator. Before then the class needs to be tested to ensure the implementation
behaves in the way specified (verification), and that the original specification meets
the user requirements (validation).

We will provide a tester class with a user interface to allow us to interrogate the 
system. We do not concern ourselves with the details of this interface. It may be any-
thing from an elaborate graphical user interface to a simple text-based interface. We
have provided a simple utility class (EasyIn.class) to simplify text-based input
(which can otherwise be cumbersome in Java). A list of all the methods provided in
our EasyIn class is given in Table 4.5 and the class itself can be downloaded from the
accompanying website.
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The IncubatorMonitorTester class

public class IncubatorMonitorTester
{
public static void main(String[] args)
{

char choice;
try // to monitor for invariant violation of initial object
{
// generate a new IncubatorMonitor object
IncubatorMonitor inc � new IncubatorMonitor();
do
{

System.out.println(“\n\t\tIncubatorMonitor Tester\n”);
System.out.println(“1. Display temperature”);
System.out.println(“2. Increment temperature”);
System.out.println(“3. Decrement temperature”);
System.out.println(“4. Quit”);
System.out.println(“Enter choice 1 �4”);
choice � EasyIn.getChar(); // accepts a character entered at the keyboard

Table 4.5 The methods of the EasyIn class

EasyIn method Description Example

getByte() returns a value of type byte entered byte x � EasyIn.getByte();
at the keyboard

getShort() returns a value of type short short x � EasyIn.getShort();
entered at the keyboard

getInt() returns a value of type int entered int x � EasyIn.getInt();
at the keyboard

getLong() returns a value of type long entered long x � EasyIn.getLong();
at the keyboard

getFloat() returns a value of type float float x � EasyIn.getFloat();
entered at the keyboard

getDouble() returns a value of type double double x � EasyIn.getDouble();
entered at the keyboard

getChar() returns a value of type char entered char x � EasyIn.getChar();
at the keyboard

getString() returns the string entered at the String x � EasyIn.getString();
keyboard

pause(String) displays a message on the screen EasyIn.pause
and pauses the program until the (“press �Enter�to quit”);
�Enter� key is pressed

Here is the code for a simple menu-driven tester. Take a look at it and then we will 
discuss it.
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System.out.println(); // blank line
try // to monitor for VDMExceptions from menu options
{
switch(choice) // process choice
{
case ‘1’ : option1(inc); break;
case ‘2’ : option2(inc); break;
case ‘3’ : option3(inc); break;
default : break;

}
}
catch (VDMException e) // to catch invariant and precondition violations
{
e.printStackTrace();

}
}while(choice !�’4’);
}
catch (VDMException e) // if initial object breaks invariant
{

System.out.println(“Initial object breaks invariant”); // error message
EasyIn.pause(“\nPress �Enter� to quit”); // pause method of EasyIn

}
}
// test VDM operation implementations
public static void option1(IncubatorMonitor incubatorIn)
{

System.out.println(“Current temperature is: “ � incubatorIn.getTemp());
}
public static void option2(IncubatorMonitor incubatorIn)
{

incubatorIn.increment(); // this method could throw a VDMException
}
public static void option3(IncubatorMonitor incubatorIn)
{

incubatorIn.decrement(); // this method could throw a VDMException
}
}

IncubatorMonitor inc � new IncubatorMonitor();

Most of the above program should be self-explanatory. We draw your attention to
only a few points here. First, an object of the class being tested (IncubatorMonitor
in this case) needs to be generated by calling the parameterless constructor of the
given class:

This constructor checks the invariant method that has been defined in the
IncubatorMonitor class. If the invariant has been broken this constructor does not 
create an initial object and instead throws a VDMException. We have monitored for
this situation in the tester by including the call to the constructor in a try block and



providing an error handler in a catch block:
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try

{

switch(choice) // process menu

{

case ‘1’ : option1(inc); break;

case ‘2’ : option2(inc); break;

case ‘3’ : option3(inc); break;

default : break;

}

}

catch(VDMException e) // thrown if the invariant or a precondition is violated

{

e.printStackTrace(); // built-in exception method

}

do

{

// menu display and processing here

}while(choice !� ‘4’);

If no exception is thrown then the initial state satisfies the invariant and testing can
proceed, otherwise testing cannot really proceed and the error handler displays an
appropriate error message

If testing can proceed, the menu processing code calls worker methods that test the
various IncubatorMonitor methods. Two of these IncubatorMonitor methods,
increment and decrement, may themselves throw a VDMException if their pre-
conditions are violated, or if they break the invariant. Rather than catching these excep-
tions in the worker methods, we have allowed them to be thrown back up to the main
method for handling. Within the mainmethod, the menu processing has been enclosed
within another try … catch block, so that all exceptions thrown from these methods
are caught in a single catch block. We have used the standard printStackTrace
method of the exception object to display the cause of the exception on the console:

try // to monitor for invariant violation of initial object
{

IncubatorMonitor inc � new IncubatorMonitor();
// rest of testing code here

}
catch (VDMException e) // if initial object breaks invariant
{

System.out.println(“Initial object breaks invariant”); // error message
EasyIn.pause(“\nPress �Enter� to quit”); // pause method of EasyIn

}

The entire menu processing code is placed within a loop and testing can continue
even after exceptions are thrown from the IncubatorMonitor methods:



The following output example shows the effect of attempting to increase the 
temperature beyond the maximum of 10 degrees Celsius:

Incubator Tester
1. Display temperature
2. Increment temperature
3. Decrement temperature
4. Quit
Enter choice 1–4
2

VDMException: Pre-condition violation
at VDM.preTest(Compiled Code)
at IncubatorMonitor.increment(Compiled Code)
at IncubatorMonitorTester.option2(Compiled Code)
at IncubatorMonitorTester.main(IncubatorMonitorTester.java:24)

In this case, an attempt to increase the temperature beyond 10 degrees breaks the 
precondition of the increment method. The printStackTrace method in the
exception handler provides detailed information about the cause of the error. The first
line will provide an error message:
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VDMException: Pre-condition violation

at VDM.preTest(Compiled Code)

at IncubatorMonitor.increment(Compiled Code)

at IncubatorMonitorTester.option2(Compiled Code)
at IncubatorMonitorTester.main(IncubatorMonitorTester.java:24)

This is the message we have coded into our preTest method. The second line will
confirm the source of the error:

An attempt to check a precondition failed, in other words a precondition did not hold.
The method in which the precondition was tested is listed in the third line:

So, the precondition of the increment method was violated. This is as expected as the
temperature is already at its maximum, attempting to increase it again will break the
precondition. The remaining lines indicate the route the exception object took before
being caught.

In a more sophisticated tester we might choose to catch the exceptions in each
method as they are thrown, rather than allow them all to be sent up to the main



method and caught in a single catch block. This would allow us to respond differ-
ently to each individual exception rather than have a general approach to handling all
exceptions.

Writing specifications is not always as smooth as we have presented in the last chap-
ter. Often, mistakes will creep into the initial specification and the final specification
will be arrived at after several iterations. Implementing the specification and testing
it in the way we have shown you in this chapter is one way of identifying any mistakes.
For example, assume we had specified the precondition of the increment operation not
as we did originally

pre temp � MAX

but as follows:

pre temp � MAX

This is a very common error to make – you can see that it would in fact allow the
temperature to be increased past the maximum allowed and so break the invariant.
When implementing this version we used the tester to increment the temperature six
times (remember it starts at 5� celsius) and got the following result:

VDMException: Invariant violation
at VDM.invTest(Compiled Code)
at IncubatorMonitor.increment(Compiled Code)
at IncubatorMonitorTester.option2(Compiled Code)
at IncubatorMonitorTester.main(IncubatorMonitorTester.java:24)

The stack trace makes clear that the increment method has broken the invariant. 
A violation of the invariant means either the code or the original specification has an
error in it. Inspection of both can help identify the original problem and allows the
problem to be fixed.

Since testing can never guarantee the absence of errors, final programs should
always monitor for exceptions. This is known as a defensive programming strategy. 
A defensive programming strategy assumes faults may still be left in the final program
and tries to manage them should they arise. In this case we have simply displayed 
a message should the invariant be broken (or the precondition violated). In the final
system we may take other forms of action and use defensive programming strategies
of forward or backward recovery. With forward recovery we may move the system
into some safe state (such as resetting the temperature back to the initial tempera-
ture). With backward error recovery we try to undo the damage caused (by dropping
the temperature back to the old value for example).

That completes the implementation and testing of the IncubatorMonitor specifica-
tion. Now we turn to the more complex IncubatorController specification.

4.6 Implementing the IncubatorController Specification
A system that not only monitored but also controlled the temperature of the 
incubator was specified in Chapter 3. Leaving the operations for a while, here again 
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is the specification:
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Implementing the Signal type in Java

class Signal

{

private int value; // a single private attribute is all that is required

// class constants representing the named quote values

public static final Signal INCREASE � new Signal (0);

public static final Signal DECREASE � new Signal (1);

public static final Signal DO_NOTHING � new Signal (2);

// this constructor is declared private and is used by the class constants

private Signal(int x)

types
Signal � �INCREASE�|�DECREASE�|�DO_NOTHING�

values
MAX : � � 10
MIN : � � �10

state IncubatorController of
requestedTemp : [�]
actualTemp : [�]

inv mk-IncubatorController (r, a) 	 (inRange(r) � r � nil) � (inRange(a) � a � nil)
init mk-IncubatorController (r, a) 	 r � nil � a � nil
end

functions
inRange(val : �) result : �
pre TRUE

post result ⇔ MIN � val � MAX

4.6.1 TRANSLATING THE SIGNAL TYPE INTO JAVA
This state specification involves a user-defined Signal type:

Signal � �INCREASE�|�DECREASE�|�DO_NOTHING�

As you know, this is an example of a union of three quote types. The union of quote types
in VDM-SL corresponds closely to an enumerated type in programming languages. Java
does not provide a direct mechanism for defining enumerated types. Instead, a class
with class constants and a private integer value can be declared. Here is an appropri-
ate Signal class in Java. Take a look at it and then we will discuss it:



We wish to allow for only three possible values for the Signal type, and these values
will represent the three quote values (INCREASE, DECREASE and DO-NOTHING). The way we
do this is to have a constructor that sets the value of a private integer attribute. This
constructor is declared private:
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class Signal
{

private int value; // this value can be set only by the private constructor

private Signal(int x)

{

value � x;
}
}

public static final Signal INCREASE � new Signal (0);

public static final Signal DECREASE � new Signal (1);

public static final Signal DO_NOTHING � new Signal (2);

{

value � x;

}

// see the discussion below

public boolean equals(Object objectIn)

{

Signal s � (Signal) objectIn;

return value �� s.value;

}

// a toString method is useful for testing purposes

public String toString()

{

switch (value)

{

case 0: return “INCREASE”;

case 1: return “DECREASE”;

default: return “DO-NOTHING”;

}

}

}

Since this constructor is private, it can be called only from within this class. 
We call it when giving values to three class constants:
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public boolean equals(Object objectIn)

{

Signal s � (Signal) objectIn;

return value �� s.value;

}

The class constants are given names that correspond to the names used in the VDM-
SL quote types. Now, wherever these values are needed in that Java program, class
constants may be used in their place. When a class constant is to be used it must be
preceded with the class name. For example:

public boolean equals(Object objectIn)

Signal s � (Signal) objectIn;

When checking one Signal object against another, we cannot use the comparison
operator ( �� ) from Table 4.3 as this is meant for the comparison of primitive 
values, not objects. Instead, an equals method is often used when comparing 
two objects in Java. For example, here is how we might translate a precondition that
compares two signal objects:

There is a standard equalsmethod that is inherited from the Object class. Often,
this inherited equals method does not behave as would be expected for objects of
the class being defined and so should be overridden. Here is the overridden equals
method in the Signal class:

Notice that the interface for the equals method requires that the input parameter
be of type Object:

VDM-SL Java

…… �INCREASE�…… …… Signal.INCREASE ……

VDM-SL Java

pre signalIn � �DECREASE� VDM.preTest(signalIn.equals(Signal.DECREASE));

This needs to be type cast back to a Signal object:



The integer attribute of the Signal object is then examined against the hidden integer
attribute to determine whether or not the two signals are equal:
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state IncubatorController of

requestedTemp : [�]

actualTemp : [�]

This will be the standard approach we use to implement types defined as a union of
quote types.

4.6.2 TRANSLATING NIL VALUES INTO JAVA
This VDM specification also makes use of the generic nil value to represent the 
notion of an undefined value. In future chapters we will have state attributes that 
are objects in Java and not values of the primitive types (int, double and char).
The null value of Java is one approach to representing the generic nil value of VDM-
SL in these cases.

When it comes to the primitive types there is no one single value that can be used
to represent the nil value for all possible variables. Instead, a different value may be
required for each variable to represent the nil (undefined) value for that variable. The
value chosen must not be one that could be an appropriate value for the given vari-
able when defined. In this example, two variables may have nil values associated with
them, the actual temperature and the requested temperature.

return value �� s.value;

As with all classes it is useful to have a meaningful string representation of the
Signal object, so we have also provided a toString method for this class that
returns the signal name.

public String toString()

{

switch (value)

{

case 0: return “INCREASE”;

case 1: return “DECREASE”;

default: return “DO-NOTHING”;

}

}



Both of these values have maximum and minimum temperatures associated with
them, and zero is one of the defined values within this range. So we must choose
another value to represent nil – the undefined temperature. For example, one possi-
ble value could be �999.

Rather than use this value throughout the code, it is useful to name it as a constant.
This will be suitable as a nil value for both variables so only a single constant need be
declared:
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Here is the complete translation of the state specification. As usual, you should
inspect it first and then read the discussion that follows.

class IncubatorController implements InvariantCheck

{

public static final int NIL � -999; // declare a NIL constant

// more code here
}

class IncubatorController implements InvariantCheck

{

public static final int NIL � �999;

// declare constants as before

public static final int MAX � 10;

public static final int MIN � �10;

// declare state attributes

private int requestedTemp;

private int actualTemp;

// initialisation satisfied by constructor

public IncubatorController()

{

requestedTemp � NIL;

actualTemp � NIL;

VDM.invTest(this); // remember to check invariant

}

// invariant

public boolean inv()

{

return (inRange(requestedTemp) || requestedTemp �� NIL)

&& (inRange(actualTemp) || actualTemp �� NIL);

}



As you can see, the attributes of the class follow directly from the VDM specification.
The constructor is used to deliver an initial system that satisfies the initialization
clause. Here the initialization clause has two conjuncts to satisfy, this can be achieved
by two assignments:
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// inRange function coded as a private method

private boolean inRange(int val)

{

return (MIN �� val && val �� MAX);

}

// VDM operations coded here as Java methods

}

VDM-SL Java

r � nil � a � nil requestedTemp � NIL;
actualTemp � NIL;

After this pair of assignments both conjuncts of the initialization predicate will be
true. Notice how we use the NIL constant in the Java code to represent the nil value
of our VDM specification. Following these instructions the invariant is checked as
before.

The invariant itself is translated using the same strategy as before. This time, however,
it makes use of an inRange function. Functions do not form part of the public interface
of the software so we can code this as a private Java method.

VDM-SL Java

inRange(val:�) result:� private boolean inRange(int val)

pre TRUE {

post result ⇔ MIN � val � MAX return (MIN �� val && val �� MAX);

}

The VDM postcondition indicates the condition (MIN � val � MAX) that should be
logically equivalent to the output (result). We can ensure that this is the case by
returning the value of this condition.

Turning to the translation of the operation specifications, we look only at the
requestChange operation. The translation of the remaining operations we leave as an
exercise. Here, once again, is the specification of requestChange.
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Here is the translation of this operation into Java:

requestChange(tempIn : �) signalOut : Signal

ext wr requestedTemp: [�]

rd actualTemp : [�]

pre inRange(tempIn) � actualTemp ≠ nil

post requestedTemp � tempIn �

(tempIn � actualTemp � signalOut � �INCREASE�

�tempIn � actualTemp � signalOut � �DECREASE�

�tempIn � actualTemp � signalOut � �DO_NOTHING�)

public Signal requestChange(int tempIn)

{

// check precondition

VDM.preTest(inRange(tempIn) && actualTemp ! � NIL);

// implement the postcondition

// satisfy first conjunct

requestedTemp � tempIn;

// satisfy second conjunct

// declare and initialize output variable

Signal signalOut � Signal.DO_NOTHING;

// set appropriate value for output variable

if (tempIn � actualTemp)

{

signalOut � Signal.INCREASE;

}

if (tempIn � actualTemp)

{

signalOut � Signal.DECREASE;

}

if (tempIn �� actualTemp)

{

signalOut � Signal.DO_NOTHING;

}

VDM.invTest(this); // check invariant before method ends

// send back output value

return signalOut;

}



The VDM operation has both an input and an output parameter. Notice how use is
made of the Signal type in the Java method header:
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The precondition of the operation is tested as before by calling our preTest
method.

VDM-SL Java

requestChange(tempIn:�)signalOut:Signal public Signal requestChange(int tempIn)

VDM-SL Java

pre inRange(tempIn) � actualTemp ≠ nil VDM.preTest(inRange(tempIn)&& actualTemp !� NIL);

The postcondition of this operation is more complex than those we have translated
before. There are two parts to this postcondition that we have to satisfy, separated by
an AND. The first part is satisfied by a simple assignment.

VDM-SL Java

requestedTemp � temp requestedTemp � tempIn;

The second part involves a series of disjuncts (ORs) that define valid values of the
Signal output. An appropriate output variable is declared and initialized:

Signal signalOut � Signal.DO_NOTHING; // signal initialised to DO_NOTHING

A series of disjuncts can usually be satisfied by a series of if statements in the final
implementation. Each disjunct will normally have a part that corresponds to the test of
the if statement and a part that corresponds to the action of the if statement. The test will
involve old values of variables and/or inputs, and the action will involve new values of
variables and/or outputs. In this case the tests relate to the value of the input parameter
(tempIn) and the action to the value of the output variable (signalOut). For example:

TEST ACTION

tempIn � actualTemp � signalOut � �INCREASE�

� �



This can be satisfied by the following if statement in Java
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if (tempIn � actualTemp)

{

signalOut � Signal.INCREASE;

}

When the test of this if statement (tempIn � actualTemp) is TRUE the first con-
junct of the VDM-SL expression (tempIn � actualTemp) is also TRUE. The assignment
axiom ensures that when the assignment within the if statement (signalOut �
Signal.INCREASE;) is executed the second conjunct is also satisfied (signalOut �
�INCREASE�).

Here is the Java translation of the series of disjuncts as a series of if statements:

VDM-SL Java

(tempIn � actualTemp � if (tempIn � actualTemp)

signalOut � �INCREASE� {

signalOut � Signal.INCREASE;
}

� tempIn � actualTemp � if (tempIn � actualTemp)

signalOut � �DECREASE� {
signalOut � Signal.DECREASE;

}

� tempIn � actualTemp � if (tempIn �� actualTemp)

signalOut � �DO_NOTHING�) {
signalOut � Signal.DO_NOTHING;

}

VDM-SL Java

signalOut � �INCREASE� signalOut � Signal.INCREASE

Notice how we made use of the constants in the Signal class to represent a quote
type. For example:



That completes the implementation of the requestChange operation. One of the
exercises you have been set is to proceed with the implementation of the remaining
IncubatorController operations.
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1. Why is Java a good choice for implementing VDM specifications?
2. What is meant by lazy evaluation in Java and why is it important when translating tests

from VDM-SL to Java?
3. Explain the invariant preservation integrity check and how this check can be incorpo-

rated into Java classes.
4. How would the following union of quote types, specified in VDM-SL, be implemented

in Java?
WeekDay � �MON�|�TUE�|�WED�|�THUR�|�FRI�

5. Complete the implementation of the remaining operations of the IncubatorController
specification.

6. Test the IncubatorController class by developing an appropriate tester program.
7. In Exercise 1 of the previous chapter, you were asked to specify an isEqual method for

the IncubatorController specification. Now add the implementation of this method into
your IncubatorController class. Then amend the tester you developed, in ques-
tion 6 above, to test this method.

8. Implement the land-craft specification you developed in Exercise 4 of the previous
chapter.

9. Test the class of question 8 above by developing an appropriate tester program.

EXERCISES

As this method has write access to the state, it is useful to check that the invariant
still holds before returning the output signal with a return statement:

VDM.invTest(this); // check invariant
return signalOut; // return output
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CHAPTER 5
Sets

5.1 Introduction
The data used in the formal specifications that we have considered so far have been
modelled by simple types such as numbers and booleans and by enumerated values.
However, many systems deal with data collections, not just elementary values. 
To model such data collections, VDM-SL provides a number of collection types. The
collection types of a formal specification language will be more abstract than pro-
gramming collection types such as arrays. This abstractness allows us to write much
more concise specifications, as the details of implementation can be omitted. The first
collection type of VDM-SL that we will look at is the set type.

5.2 Sets for System Modelling
We have already come across the mathematical concept of a set in Chapter 2. A set is
an unordered collection of objects in which repetition is not significant. So, if we are
modelling a collection of objects that are considered unique, and in which ordering is
unimportant, the set type is a good candidate. For example, consider a collection of
patients registered on the books of a doctor’s surgery. A set might be used to model
this collection, as patients are considered unique in the register and the ordering of
patients in this register will not be relevant. If repetition and ordering are relevant,
however, a set may not be an appropriate type to use. For example, a set would not be
the appropriate way to model the queue of patients waiting for a doctor, as ordering
is important here. Also, a set may not be an appropriate way to model the patients
seen by a doctor over a given period, as a patient may have seen a doctor more than
once. We will look at suitable VDM-SL types for such scenarios in later chapters.

5.3 Declaring Sets in VDM-SL
To indicate a value to be of the set type in VDM-SL, the type constructor -set
is appended to the type associated with the elements of the set. A type constructor
creates a new type from an old. For example, consider the following familiar VDM-SL
declaration:

aNumber: �

This records the fact that aNumber is an item of data that may be used to hold a natu-
ral number. To declare an item of data to hold a collection of numbers the following
declaration can be used:

someNumbers: �-set
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This records the fact that someNumbers is an item of data that will hold zero, one or
more natural numbers. If negative whole numbers are to be allowed then the integer
type, not the natural number type, is the appropriate base type of the set elements.

someOtherNumbers: �-set

As a further example, assume that a Day type has already been defined as follows:

We might declare an item of data, importantDays say, to hold a collection of days as
follows:

importantDays: Day-set

Once a set has been declared in VDM-SL its values can be defined.

5.4 Defining Sets in VDM-SL
One way in which to define the value of a set is to list the elements individually, 
separated by commas and enclosed in braces. This is known as enumerating the 
elements of a set. So we could define the values in the sets someNumbers and
importantDays as follows:

someNumbers � {2, 4, 28, 19, 10}
importantDays � {�FRI�, �SAT�, �SUN�}

Of course, the ordering of the elements in these sets is unimportant. So the above
sets could just as equally be presented as follows:

someNumbers � {28, 2, 10, 4, 19}
importantDays � {�SUN�, �FRI�, �SAT�}

Also, as repetition is not significant in sets, the above sets are equivalent to the sets
given below:

someNumbers � {28, 2, 10, 2, 4, 19, 2}
importantDays � {�SUN�, �FRI�, �SAT�, �FRI�, �FRI�}

However, since repetition is not significant in a set, it is common to list sets without
such repetitions.

A second way of defining a set in VDM-SL is to use subranges. This method can be
used when a set of continuous integers is required. For example:

someRange � {5, … ,15}

types
Day � �MON� | �TUE� | �WED� | �THU� | �FRI� | �SAT� | �SUN�



Sets 77

A subrange returns the set of all numbers from the first to the last number inclusive.
So this subrange is equivalent to the following enumerated set definition:

someRange � {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

When the second number in the range is smaller than the first, the empty set 
is returned. The empty set is represented in VDM-SL as an empty pair of braces.1

For example:

{7, … ,6} � { }

The third and most powerful way to define a set is by comprehension. This allows
a set to be defined by means of an expression and/or a test that each element in the
set must satisfy. Here is an example (assuming the existence of an isEven function for
determining whether or not a number is even):

someNumbers � {x | x � {2, … ,6} ● isEven(x)}

This produces a set of all elements that are drawn from the set {2, …,6} and are also
even numbers. In other words it produces the set {2, 4, 6}.

In general, set comprehension takes the following form:

someSet � {expression (x) | binding (x) ● test(x)}

Here the bar | is read ‘such that’. The binding and the test to the right of this 
bar determine acceptable values for the free variable (x in this case). The bullet (●)
separates the binding from the test. This free variable is then used in the expression
to the left of the bar to determine the final value of elements in the new set. The
expression can be extremely simple, as in the someNumbers example where the
expression was the bound variable itself. Here is an example that employs a slightly
more complex expression:

someOtherNumbers � {x2 | x � {2, … ,6}}

In this case the expression squares the value of the bound variable. In a case such
as this, where the binding has no associated test, the test is assumed to evaluate to
TRUE for all values of the bound variable. So in this case, all numbers from 2 to 6 are
squared, producing the following set:

someOtherNumbers � {22, 32, 42, 52, 62}

� {4, 9, 16, 25, 36}

Finally, note that a type can be used in the binding instead of a set. When using a
type the ‘is of type’ symbol (:) is to be used rather than the ‘is an element of’ symbol
used on sets (�). Here is an example of the use of a type binding.

smallNumbers � {x | x: � ● 1 � x � 10}

This set comprehension produces a set of all natural numbers that lie within the
range 1–10.

1 In maths texts that cover standard set theory, the symbol � will usually be used to represent an
empty set.
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5.4.1 FINITE AND INFINITE SETS IN VDM-SL
All of the sets defined above are finite sets – they contain a clearly defined number of
elements. However, sets such as the set of all integers or the set of all real numbers
have an infinite number of elements and so are described as infinite sets. Eventually,
sets defined in specifications need to be implemented on a machine. As infinite sets
are impossible to implement on a machine, a requirement on sets used in VDM-SL is
that they be finite. This is not such an issue when defining sets using enumeration 
(or subranges) as listing the elements individually clearly implies the sets are finite.
However, it is important to ensure sets are finite when defining them using compre-
hension. Consider the following set for example:

infiniteSet � {x | x: � ● x � 0}

This defines a set of all negative integers and as such is an infinite set that is not 
permissible in VDM-SL.

5.5 Set Operations
In this section we will explore the various operations that we can perform on one or
more sets.

5.5.1 SET UNION, INTERSECTION AND DIFFERENCE
There are three set operators that take two sets from which one new set is returned.
They are set union, set intersection and set difference. In each case, the types of 
elements in each set are assumed to be the same.

The union of two sets, j and k returns a set that contains all the elements of the set
j and all the elements of the set k. It is denoted by:

j � k

This is read as j union k. For example:

if j � {�MON�, �TUE�, �WED�, �SUN�}
and k � {�MON�, �FRI�, �TUE�}
then j � k � {�MON�, �TUE�, �WED�, �SUN�, �FRI�}

Notice that the union operator returns a result whether or not the two sets have 
common elements. If, as in this case, the two sets do have common elements, then it
is usual to list the element only once in the union of the two sets – as explained in 
section 5.4, to list them more than once would be redundant. So, for example, �MON�
and �TUE� appear in both the sets j and k. They are listed only once in the resulting
union of the two sets, however.

The next operator to consider is intersection. The intersection of two sets j and k
returns a set that contains all the elements that are common to both j and k. It is
denoted by:

j � k
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This is read j intersection k. For example:

if j � {�MON�, �TUE�, �WED�, �SUN�}
and k � {�MON�, �FRI�, �TUE�}
then j � k � {�MON�, �TUE�}

The difference of j and k is the set that contains all the elements that belong to j but
do not belong to k. It is denoted by:

j \ k

This is read j difference k. For example:

if j � {�MON�, �TUE�, �WED�, �SUN�}
and k � {�MON�, �FRI�, �TUE�}
then j \ k � {�WED�, �SUN�}

As with set union and set intersection, set difference requires two sets. It would not be
correct to use the following notation:

{�MON�, �TUE�, �WED�} \ �TUE�

Here, the second operand of the set difference operator is given as an element,
�TUE�, when it should be a set. The correct way to formulate this expression would
be to make this element into a set containing just that element:

{�MON�, �TUE�, �WED�} \ {�TUE�}

A set containing just a single element is referred to as a singleton set.
Note that set union and set intersection are what is known as commutative opera-

tors. A commutative operator returns the same result regardless of the order of the
parameters. For example, in arithmetic, the addition operator is commutative i.e.

x � y � y � x

In a similar way, set union and set intersection return the same result regardless of
the order of the two parameters:

j � k � k � j
j � k � k � j

However, set difference is not commutative: the order of the parameters is significant
to the result. In general:

j \ k � k \ j

This is clear from the values of j and k given earlier where:

j � {�MON�, �TUE�, �WED�, �SUN�}
k � {�MON�, �FRI�, �TUE�}
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Given these values it can be seen that j \ k gives

{�WED�, �SUN�}

Whereas k \ j gives:

{�FRI�}

5.5.2 SUBSETS
In Chapter 2 we met two set operators that return boolean results, that is set 
membership (�) and set non-membership (�). These operators check whether or not
a particular element is present in a particular set. Another set operator that returns 
a boolean result is the subset operator (�). Unlike the set membership operators, 
this operator takes two sets. It returns TRUE if all the elements in the first set are 
also elements of the second set and FALSE otherwise. So the following evaluates 
to TRUE:2

{a, d, e} � {a, b, c, d, e, f }

The following, however, evaluates to FALSE:

{a, b, c, d, e, f } � {a, d, e}

as some elements of the first set (namely b, c and f) are not elements of the second set.
The subset operator also returns TRUE if both sets are equal (that is, share exactly the
same elements). Thus the following evaluates to TRUE:

{a, d, e} � {d, a, e}

If you wish to exclude this possibility then the proper subset operator can be used
(�). Thus, although the following evaluates to TRUE:

{a, d, e} � {a, b, c, d, e, f }

the following evaluates to FALSE:

{a, d, e} � {d, a, e}

Striking a line through the subset operators reverses the logic so that the operator
returns TRUE when one set is not a subset of another. Thus the following evaluates to
TRUE:

{a, d, e} 	 {a, x, y, k}

2 In the example given, and throughout this text, we are using italics for variable names.
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5.5.3 CARDINALITY
The cardinality operator of VDM-SL (card) returns the number of elements in a given
set. Here are some examples:

card {7, 2, 12} � 3
card {4, … ,10} � 7
card { } � 0

Note that, as repetition is not significant in sets, repeated elements are counted only
once when calculating the cardinality. For example

card {7, 2, 12, 2, 2} � card {7, 2, 12} � 3

5.6 The Patient Register
To illustrate the use of sets in a formal specification we will consider a system that 
registers patients at a doctor’s surgery. We will assume that the surgery can deal with
a maximum of 200 patients on its register. It will be necessary to add and remove
patients from the register. As well as this, the register must be able to be interrogated
so that the list of patients and the number of patients registered can be returned. Also,
a check can be made to see if a given patient is registered. The UML diagram for the
PatientRegister class is given in Figure 5.1.

Here we have used the UML collection syntax ([*]), to indicate a collection of 
values. For example, the type of the reg attribute is not a single patient but a collection
of zero or more patients.

reg: Patient [*]

Similarly, the getPatients operation does not return a single patient but many (zero
or more) patients:

getPatients( ): Patient [*]

PatientRegister

reg: Patient [*]

addPatient(Patient)

removePatient(Patient)

getPatients( ): Patient[*]

isRegistered (Patient): Boolean

numberRegistered():Integer

Figure 5.1 The UML specification of the PatientRegister class
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None of the methods of the PatientRegister class requires us to interrogate the
details of a patient, so the Patient type itself does not need to be analysed further.

Having clarified the nature of the system we can now specify it formally in 
VDM-SL.

5.7 Modelling the PatientRegister Class in VDM-SL
Clearly the class centres around recording of information about a collection of
patients. You can see from Figure 5.1 that we have identified a Patient type but that it
was decided that it was not necessary to analyse this type further. Types whose inter-
nal details are not relevant to the specification can be declared to be TOKEN types in
VDM as follows:

types

Patient � TOKEN

values

LIMIT: � � 200

state PatientRegister of

reg: Patient-set

inv mk-PatientRegister (r) 	 card r � LIMIT

The number of patients that can be registered at the surgery is said to be limited to
200. This can be recorded as a constant value in our specification:

Returning to the single attribute, reg, we have already seen that in UML this has been
specified to be a collection of patients. Since ordering of patients on the register is not
significant, and since patients are considered unique in the register, a set is a good way
to model this collection formally:

As we have seen, a restriction on this model is that the number of patients in the
register can never exceed the limit of 200. The cardinality operator can be used to
express this constraint in the invariant.
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Initially, the register will be empty:

types

Patient � TOKEN

values

LIMIT: � � 200
state PatientRegister of

reg: Patient-set

inv mk-PatientRegister (r) 	 card r � LIMIT

init mk-PatientRegister (r) 	 r � { }
end

ext wr reg: Patient-set

addPatient (patientIn: Patient)

init mk-PatientRegister (r) 	 r � { }

Here is the complete state definition.

Now for the operation specifications. We will start by considering the addPatient
operation. Here is its interface from the UML specification:

addPatient(Patient)

You can see that this operation takes one input (of type Patient) and does not return 
a value. Remembering to give a name to the input variable, this gives us the following
VDM operation header:

Since this operation will modify the list, the state attribute needs to be given read
and write access.

We will consider the postcondition before returning to think about the pre-
condition. The postcondition has to capture the fact that the given patient is now
recorded within the register. Set union allows us to capture the notion of adding 
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to the register:

Note the need to enclose the element patientIn in braces in order to make it a set. It
is often useful to reconsider the ext clause once the postcondition is completed, to
ensure state access has been specified correctly. In this case the postcondition makes
clear that the reg attribute will be modified, so wr access was the correct type of access
to choose.

Now consider any restrictions that might need to be placed on this operation. These
restrictions will be recorded in the precondition. There are two restrictions that are
worth recording. It is sensible to record a patient in the register only if that patient 
has not yet been recorded. This has nothing to do with the use of the union operator
in the postcondition, as the union operator allows two sets with common elements 
to be joined. However, it is a real-world consideration that is worth recording. 
Second, in order to preserve the invariant, we should ensure the register is not full
before an extra patient is recorded. This gives us the following precondition:

pre patientIn � reg � card reg � LIMIT

addPatient (patientIn: Patient)

ext wr reg: Patient-set

pre patientIn � reg � card reg � LIMIT

post reg � reg � {patientIn}

removePatient (patientIn: Patient)

ext wr reg: Patient-set

pre patientIn � reg

post reg � reg \ {patientIn}

post reg � reg � {patientIn}

The complete specification for this operation is presented below:

The removePatient operation is structurally the same as the addPatient operation,
except its logic is reversed. The patient should have been registered before her record
can be removed, and once complete the new register will be the same as the old 
but for the fact that the given record has been removed. The set difference operator
can be used:
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It is worth noting how concise this specification is when compared to the complex
algorithm that might be required in software to remove a patient’s record from a store
of information. This abstractness captures the essence of the operation, namely that
all occurrences of the given patient are removed from the register, without having 
to deal with the complexities of the implementation.

We now turn our attention to the getPatients operation. Here again is the 
operation’s interface from the UML specification:

getPatients( ): Patient[*]

This operation has no inputs but returns a collection of patient records as an output.
Again, since records in this collection are unique and ordering of this collection is
unimportant, the result can be modelled as a set of patient records. This operation
need only read access to the register, giving the following VDM specification:

isRegistered (patientIn: Patient) query: �

ext rd reg: Patient-set

pre TRUE

post query ⇔ patientIn � reg

numberRegistered ( ) total: �

ext rd reg: Patient-set

pre TRUE

post total � card reg

getPatients ( ) output: Patient-set

ext rd reg: Patient-set

pre TRUE

post output � reg

The isRegistered operation checks whether or not a given patient record is included
in the register:

Finally, the numberRegistered operation returns the number of patients currently
registered at the surgery. The UML specification for the operation interface indicates
the return value is to be of type integer.

numberRegistered( ):Integer

In fact, the number registered will never be a negative number so the natural number
type is the better choice in our specification. The number of patients registered can be
retrieved by using the cardinality operator:
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That completes the formal specification of the PatientRegister class. You can see that
the set type and its associated operators provide us with a powerful mechanism for mod-
elling system properties in a very concise way when dealing with collections of objects.

5.8 The Airport Class
We now turn our attention to a slightly more complex example of specification using
sets. Consider a system that keeps track of aircraft that are allowed to land at a 
particular airport. Aircraft must apply for permission to land at the airport prior to
landing. When an aircraft arrives to land at the airport it should only have done so 
if it had previously been given permission. When an aircraft leaves the airport its 
permission to land is also removed.

Aspects of this system description are oversimplified, but this will be improved
upon in Chapter 7 when we have more data types available. From this description the
following operations have been identified.

givePermission: records the fact that an aircraft has been granted permission to land
at the airport.
recordLanding: records an aircraft as having landed at the airport.
recordTakeOff: records an aircraft as having taken off from the airport.
getPermission: returns the aircrafts currently recorded as having permission to land
getLanded: returns the aircrafts currently recorded as having landed
numberWaiting: returns the number of aircrafts granted permission to land but not
yet landed.

Figure 5.2 shows the UML specification for the Airport class.
The internal details of the Aircraft type are not relevant to the Airport specification,

so it is not analysed further. In the VDM specification of the Airport class, this Aircraft
type can therefore be represented as a TOKEN type:

types

Aircraft � TOKEN

state Airport of

permission: Aircraft -set

landed: Aircraft -set

The UML specification of Figure 5.2 indicated that two attributes are required and
that both attributes are a collection of aircraft records. Since each aircraft record 
is unique, and ordering of records in either collection is not important here, sets of 
aircraft records can be used to model these collections in VDM-SL:
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Now consider the state invariant. Only aircraft with permission can have landed.
The subset operator allows us to express the fact that all landed aircraft must also be
aircraft with permission:

init mk-Airport (p, l) 	 p � { } � l � { }

types

Aircraft � TOKEN

state Airport of

permission: Aircraft-set

landed: Aircraft -set

inv mk-Airport(p,l) 	 l � p

init mk-Airport (p, l) 	 p � { } � l � { }

end

Airport

permission: Aircraft [*]

landed: Aircraft [*]

givePermission(Aircraft)

recordLanding(Aircraft)

recordTakeOff(Aircraft)

getPermission( ): Aircraft [*]

getLanded( ): Aircraft [*]

numberWaiting(): Integer

Figure 5.2 A UML specification of the Airport class

inv mk-Airport(p,l) 	 l � p

Notice that the proper subset operator (�) is not the appropriate one to use here,
since all aircraft with permission to land might actually have landed; in other words
the two sets of aircraft might be equal. Finally, consider the initial values of these
attributes. No aircraft will have been given permission to land or will have landed so
both sets should initially be empty:

Here is the complete data specification.
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Now we can turn to the operation specifications. Here is the givePermission operation:

recordLanding (craftIn: Aircraft)

ext rd permission: Aircraft -set

wr landed: Aircraft -set

pre craftIn � permission � craftIn � landed

post landed � landed � {craftIn}

givePermission (craftIn: Aircraft)

ext wr permission: Aircraft -set

pre craftIn � permission

post permission � permission � {craftIn}

The precondition records the requirement that, before the operation, the given 
aircraft should not already have permission to land. The postcondition records the
requirement that, after the operation, the given aircraft should be recorded in the set
of aircraft given permission to land.

Next we will specify the recordLanding operation. This operation needs to modify 
the landed attribute, but it also needs to ensure that the landed aircraft had permis-
sion to do so – consequently it will need to read the set of aircraft with permission 
to land:

The precondition records the restriction that the given aircraft needs to have been
allocated permission to land and should not already be recorded as having landed.
The postcondition records the modification that should have occurred to the set of
landed aircraft upon completion.

Notice that if we did not record the precondition that the given aircraft already be
recorded in the permission set, it is possible that the state invariant (which requires all
landed aircraft be in the set permission) may be broken upon completion of this oper-
ation. Checking that operations preserve the state invariant often proves useful in
spotting specification errors.

The recordTakeOff operation removes an aircraft record from the landed set and also
removes the record from the permission set. So both attributes require write access. 
A precondition is required to ensure that the aircraft was previously recorded as 



The getPermission operation returns the value of the permission attribute:
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recordTakeOff (craftIn: Aircraft)

ext wr permission: Aircraft -set

wr landed: Aircraft -set

pre craftIn � landed

post landed � landed \ {craftIn} � permission � permission \ {craftIn}

getLanded( ) out: Aircraft -set

ext rd landed: Aircraft -set

pre TRUE

post out � landed

numberWaiting( ) total: �

ext rd permission: Aircraft -set

rd landed: Aircraft -set

post total � card (permission \ landed)

getLanded ( ) out: Aircraft -set

ext rd permission: Aircraft -set

pre TRUE

post out � permission

Similarly, the getLanded operation returns the value of the landed attribute:

The final operation to look at is numberWaiting. The cardinality operator is used to
count the number of aircraft that have been given permission to land but not yet
landed:

having landed at the airport. Here is its specification:



This completes the Airport specification.
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1. Consider the following sets:
a � {1, 3, 5, 2} b � {3, 2} c � {5, 3, 7, 9} d � {2, 3}
Now evaluate the following expressions

(i) a � b
i(ii) a � { }
(iii) card (b � c)
(iv) c � d
i(v) { } � d
i(vi) c \ d
(vii) c \ { }
(viii) b � d
(ix) a � b
(x) b � a
(xi) {2x | x � a ● x � 2}
(xii) {card b, … ,card c}

2. How would specification of the Airport system change if there were to be a limit (say
20) to the number of aircraft that could be landed at any one time?

3. Consider a system to monitor ambulances allocated to a hospital. All ambulances will
either be at the hospital base or on call. The hospital can be responsible for a maximum
of 25 ambulances. Figure 5.3 gives the UML specification of an AmbulanceMonitor
class that tracks the location of ambulances.

It is not necessary to analyse the details of the Ambulance type further. The opera-
tions identified are informally specified as follows:

addAmbulance: records an additional ambulance at the hospital base as long as there is
capacity to do so.
removeAmbulance: removes an ambulance from the list of recorded ambulances as long
as that ambulance is not out on call.
sendOnCall: records an ambulance, which should currently be recorded as being at the
hospital base, as being sent out on a call.

EXERCISES

AmbulanceMonitor

atBase: Ambulance[*]

onCall: Ambulance [*]

addAmbulance(Ambulance)

removeAmbulance(Ambulance)

sendOnCall(Ambulance)

backToBase(Ambulance)

getAtBase( ): Ambulance [*]

getOnCall( ): Ambulance [*]

ambulanceAvailable( ): Boolean

totalNumber( ):Integer

Figure 5.3 The UML specification for the AmbulanceMonitor class
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backToBase: records an ambulance, which should currently be recorded as being out on
call, returning back to the hospital base.
getAtBase: returns the ambulances currently recorded as being at the base.
getOnCall: returns the ambulances currently recorded as being out on call.
ambulanceAvailable: checks whether or not there are any ambulances at base to send
out to a call.
totalNumber: returns the total number of ambulances.

Formally specify the AmbulanceMonitor class in VDM-SL.
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Implementing Sets
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6.1 Introduction
We saw in Chapter 4 that the simple types of VDM-SL all have a representation 
in Java. Although the collection types available in Java are a fair approximation 
to the collection types available in VDM-SL, they do not completely model the 
VDM types. If these Java types were directly used in the final implementation then 
the differences between them and the VDM types would need to be borne in mind.
The approach that we take in this book, however, is to provide our own Java 
classes that completely model the VDM-SL collection types. Our Java classes will
make extensive use of the predefined collection classes already available in Java, but
customize them so that all operators available in the corresponding VDM types are
made available.

In this chapter we describe the VDMSet class that we have implemented to 
model the VDM-SL set type. This class can be downloaded from the website. We go on
to use this class to develop Java implementations of the VDM specifications from
Chapter 5.

6.2 The Collection Classes of Java
Java provides a large group of predefined collection classes known as the collection
framework. These classes are found in the java.util package. The collection class
we shall adopt for implementing the VDM-SL set type will be the Vector class.

6.2.1 THE Vector CLASS
A vector is an indexed collection of items. Like all of Java’s collections, a vector is a
generic collection class – meaning that it can be used to hold objects of any class. This
is achieved by treating all elements in the collection as being of type Object. Since
all classes in Java inherit from the Object class this allows objects of any type to be
placed into the collection. Table 6.1 lists some of the more common methods available
with the Vector class.

Elements in a vector need not be unique and the vector grows as more elements are
added to it. Here is an example of a collection of strings being added to a vector and



When these instructions are executed within a Java program the following vector is
displayed:

[RED, GREEN, YELLOW, GREEN]

A vector can be displayed because it, like all collection classes in Java, has a toString
method defined. In Java, a vector is displayed in square brackets. Although vectors can
be used to hold objects of any type, they cannot hold values of primitive types such as
int and double. Instead, wrapper classes such as Integer and Doublemust be used
to wrap primitive values inside an object before placing into the collection. For example:

then displayed:
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Table 6.1 Some Vector methods

Method Description

Vector( ) Creates a new empty vector.

boolean add (object) Adds the given item to the end of the vector. This method
always returns true.1

boolean contains(Object) Returns true if the vector contains the given element, and
false otherwise.

Enumeration elements( ) Returns an Enumeration2 object that allows the values
of a vector to be scanned.

// create empty vector

Vector someList � new Vector();

// add items

someList.add(“RED”);

someList.add(“GREEN”);

someList.add(“YELLOW”);

someList.add(“GREEN”);

// display vector

System.out.println(someList);

// create empty vector

Vector someNumbers � new Vector();

// add primitive integers by wrapping up in Integer objects

someList.add(new Integer(3));

1 The add methods of other collection classes return a boolean value to indicate whether or not
an element was added successfully to the collection. To be consistent with these add methods, the
Vector add method also returns a boolean value, but because an item can always be added
into a vector the value returned is always true.

2 Enumeration objects provide a standard way of scanning the elements of a collection. Such objects
provide two methods for this purpose: hasMoreElements (which returns true if there are more
elements to scan) and nextElement (which returns the next element in the collection to process).



This displays the following vector:

[3, 11, 9]

6.3 Using a Vector to Implement a Set
We have developed a class, VDMSet,3 which models the VDM-SL set type. The single
attribute of this class is a vector to hold the elements of the set:

This is a private attribute so is kept hidden, but we list it here for your informa-
tion. If a set had been declared in a VDM specification, it can be declared as an object
of our VDMSet class in Java. For example:

The methods of our VDMSet class allow for a set to be initialized in various ways (as
an empty set, by means of a range and so on) and to be examined by the set operators
(such as set union, set intersection and so on). We will discuss the use of these 
methods in the following sections. They have been implemented to ensure that 
repetition of elements is not significant in the set.
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someList.add(new Integer(11));

someList.add(new Integer(9));

// display vector

System.out.println(someList);

3 We have called our class VDMSet rather than Set as a class called Set has recently been added
to newer versions of Java. The new Java Set class, however, is not a complete model of the VDM-
SL set type, so we still need to develop our own class for this purpose.

import java.util.*;
class VDMSet

{

private Vector theSet;
// methods go here

}

VDM-SL Java

someSet: SomeType-set VDMSet someSet;



6.3.1 THE CONSTRUCTORS
A number of constructors are provided to allow for a set to be initialized as empty or
with a collection of values. They are summarized in Table 6.2. Table 6.3 provides
examples of how these constructors are used.

We draw your attention to the use of the set constructor that creates a set from an
array of elements sent as a parameter. The parameter to this constructor is overloaded
to accept an array of primitive values as well as an array of objects. For example, an
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Table 6.2 VDMSet constructors

Constructor Description

VDMSet() Empty set constructor.

VDMSet(Object[]) Explicit set constructor – creates a new set from an array 
of objects passed as a parameter. Overloaded for an array
of primitive types (int, char and double). Repeated 
array elements are stored only once in the resulting set.

VDMSet(Object) Singleton set constructor – creates a new set containing 
the single object passed in as a parameter. Overloaded for 
the primitive types int, char and double.

VDMSet (int, int) Set range constructor – creates a new set of integers 
ranging from the first to the second integer parameter 
inclusive. As with the VDM-SL range operator, if the first 
range value is greater than the second an empty set is 
returned.

Table 6.3 VDMSet constructors – examples

VDM-SL example Java example

Empty set constructor

someSet � {} someSet � new VDMSet();

Explicit set constructors

someSet � {“RED”, “BLUE”} someSet � new VDMSet (new Object[] {“RED”, “BLUE”});

someSet � {12, 9, 17] someSet � new VDMSet (new int[] {12, 9, 17});

someSet � {5.5, 12.75, 0.75} someSet � new VDMSet (new double[] {5.5, 12.75, 0.75});

someSet � {‘A’, ‘B’, ‘C’} someSet � new VDMSet (new char[] {‘A’, ‘B’, ‘C’});

Singleton set constructors

someSet � {“RED”} someSet � new VDMSet(“RED”);

someSet � {12} someSet � new VDMSet(12);

someSet � [12.75] someSet � new VDMSet(12.75);

someSet � {‘B’} someSet � new VDMSet(‘B’);

Set range constructor

someSet � {1,…,10} someSet � new VDMSet (1, 10};



array of integers is appropriate to create the set {12, 9, 17}. An anonymous array4 is
a convenient way of submitting this parameter:

new VDMSet (new int[] {12, 9, 17})

Note that the ordering of the elements within the array is irrelevant and any
repeated elements in the array are recorded only once in the set.

6.3.2 THE SET OPERATORS
We have provided methods for all the set operators within the VDMSet class. 
These are summarized in Table 6.4. Table 6.5 provides examples of the use of these
operators.
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Table 6.4 VDMSet operators

Method Description

int card() Returns the cardinality of the set.

boolean contains(Object) Returns true if the given object is a member of 
the set and false otherwise. This method is 
overloaded to accept a parameter of type int,
double or char.

boolean doesNotContain(Object) Returns true if the given object is not a member 
of the set and false otherwise. This method is 
overloaded to accept a parameter of type int,
double or char.

VDMSet union(VDMSet) Returns a VDMSet constructed from the union 
of the set and the set passed in as a parameter.

VDMSet intersection(VDMSet) Returns a VDMSet constructed from the 
intersection of the set and the set passed in as a 
parameter.

VDMSet difference(VDMSet) Returns a VDMSet constructed from the 
difference of the set and the set passed in as a 
parameter.

boolean isASubsetOf(VDMSet) Returns true if the set is a subset of the set
passed in as a parameter and false otherwise.

boolean isNotASubsetOf(VDMSet) Returns true if the set is not a subset of the set
passed in as a parameter and false otherwise.

boolean isAProperSubsetOf(VDMSet) Returns true if the set is a proper subset of the set
passed in as a parameter and false otherwise.

boolean isNotAProperSubsetOf Returns true if the set is not a proper subset of
(VDMSet) the set passed in as a parameter and false

otherwise.

4 An anonymous array is one that is not assigned to a variable but is created and initialized in one
line. If you are not already familiar with anonymous arrays you can find a more detailed overview
in the appendix on the accompanying website.



6.3.3 SET COMPREHENSION
Set comprehension allows a set to be defined by filtering the elements of some 
other set by means of a test and/or an expression.5 We have provided a class 

98 Formal Software Development

Table 6.5 VDMSet operators – examples

VDM-SL Java

card someSet someSet.card();

i � someSet someSet.contains(i);

i � someSet someSet.doesNotContain(i);

setA � setB setA.intersection(setB);

setA � {1,2} setA.intersection(new VDMSet (int[] 

{1,2}));

setA � setB setA.union(setB);

setA � {‘C’} setA.union(new VDMSet (‘C’));

setA \ setB setA.difference(setB);

setA \ {10, …,50} setA.difference(new VDMSet(10,50));

setA � setB setA.isASubsetOf(setB);

setA 
 setB setA.isNotASubsetOf(setB);

setA � setB setA.isAProperSubsetOf(setB);

setA 	 setB setA.isNotAProperSubsetOf(setB);

Additional methods have been provided in order to simplify the process of testing
and implementation. These are shown in Table 6.6.

Table 6.6 Additional VDMSet operators

VDMSet method Description

Object choice ( ) Returns an arbitrary element from the set. If the set
is empty, throws a VDMException.

boolean equals(Object) Accepts an object, and returns true if this object
is identical to the original set, otherwise returns
false.

String toString() Returns a string representation of the set.
Enumeration getElements() Returns an enumeration object to allow the

elements of the set to be scanned.
boolean isEmpty() Returns true if the set is empty, otherwise returns

false.

5 You will remember from Chapter 5 that VDM-SL allows types as well as sets to be used in set
comprehension. Our set comprehension method cannot be used with types, it must always be
used with a set. If a type is used in VDM-SL, you must replace it with a set of values in Java.
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Overloaded forms of this method allow either the expression or the test to be omitted.
We have defined two interfaces for this purpose: Testable and Expression. The
Testable interface ensures an implementation is provided for a test method. This
method checks the value of an object to determine whether or not it should be added
into the set:

someSet � VDMSet.setComp (Expression e, VDMSet other, Testable t);

method, setComp, for this purpose. The general form of this method is given as 
follows:

interface Testable

{

public boolean test (Object x);

}

The Expression interface ensures an implementation is provided for an action
method. This method applies some function to an object before it is added into the set:

interface Expression

{

public Object action (Object x);

}

These interfaces assume a set of objects is being filtered. Alternative interfaces exist for
tests and expressions dealing with the primitive parameter types. These interface
names end in the type name. ExpressionInt and TestableInt, for instance,
allow expressions and tests to be created that process integer values rather than
objects. The set comprehension method has been overloaded to allow parameters of
these types to be passed. Here is an example of the use of set comprehension to 
initialize a set of integers by means of a test:

VDM-SL Java

someSet � someSet � VDMSet.setComp(

{ x | x � {2, 4, 7, 1, 11} ● x � 5 } new VDMSet(new int[]{2,4,7,1,11}),

new TestableInt(){

public boolean test (int x)

{return x � 5;}

} );
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6 Like an anonymous array, an anonymous class allows a class to be defined and used in one line
without giving it a specific name. Further coverage of anonymous classes can be found in the
appendix on the accompanying website.

Notice how an object from an anonymous class6 is used to send a TestableInt
object to this method. This anonymous class implements the TestableInt interface
by providing a test method that accepts an integer and returns a boolean value:

new TestableInt()

{

public boolean test (int x)

{

return x � 5;

}

}

Our setComp method iterates through the given set (new VDMSet(new int[]
{2,4,7,1,11})) and applies the test (x � 5) to all elements in the set. Those 
elements that satisfy the test are included in the new set, giving a final set as follows:

{7, 11}

Here is an example of a set comprehension that uses an expression rather than a test:

VDM-SL Java

someSet � { 2 x | someSet � VDMSet.setComp( new ExpressionInt()

x � {2, 4, 7, 1, 11} { public Object action (int x)

{return new Integer (2*x);}},

} new VDMSet(new int[]{2,4,7,1,11}));

This set comprehension doubles the value of every element in the original set, giving
a new set with the following value:

{4, 8, 14, 2, 22}

Notice that the ExpressionInt interface requires that the action method still
return an object:

public Object action (int x)
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So the integer returned needs to be wrapped up in an object by making use of the
Integer class:

Having discussed the VDMSet class we now go on to demonstrate how this class can
be used to implement a VDM specification.

return new Integer (2*x);

6.4 Implementing the PatientRegister Specification
In the previous chapter we presented the specification of the PatientRegister class.
Here is the specified data model once again:

types

Patient � TOKEN

values

LIMIT: � � 200

state PatientRegister of

reg: Patient-set

inv mk-PatientRegister (r) 	 card r � LIMIT

init mk-PatientRegister (r) 	 r � { }

end

This specification defines a token type, Patient.

Patient � TOKEN

We have not shown you how to implement a VDM specification that makes use of token
types before, so we need to discuss this before returning to the PatientRegister class.

6.4.1 IMPLEMENTING TOKEN TYPES
A token type is one whose internal details are not relevant to the specification. However,
when it comes to system implementation, a concrete representation for this token
Patient type is required. This representation should be encapsulated in a Patient class.

The details of such a Patient class are not significant for the system being speci-
fied. All that is functionally required of values of a token type such as this is that they
be distinguishable from each other, that is, it should be possible to check for equality.
The simplest implementation of this type is therefore a Patient class that provides
an equals method. Once again, for testing to be effective, a toString method
should also be provided.

We have provided a class, VDMToken for this purpose. The class contains a single
String attribute and a constructor is provided to set this attribute. If a concrete 
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representation for a token type has not been decided upon prior to program imple-
mentation, you may simply extend our VDMToken type. Here for example is a suitable
Patient type:

Implementing the token Patient type

class Patient extends VDMToken
{

public Patient(String valueIn)
{

super(valueIn); // The constructor just needs to call the super constructor
}

}

Values of this type can now be created by sending in an appropriate parameter to the
Patient constructor. For example:

Patient somePatient � new Patient (“Madhu”);

In the final system we may wish to revisit this implementation of the Patient class
and provide more attributes and/or methods. But for testing purposes this class 
will be sufficient. We will consistently use this approach to implement token types if
the final representation has yet to be decided upon. Let us return now to the
PatientRegister class.

6.4.2 THE DATA MODEL
Returning to the formal specification, we will implement the LIMIT constant in the
usual way:

class PatientRegister implements InvariantCheck

{

public static final int LIMIT � 200;

// rest of class goes here

}

Notice that we have marked this class as having implemented the InvariantCheck
interface as we will be providing an invariant method.

The class has only one state attribute, reg. It is declared to be of the set type so the
VDMSet class can be used in the Java implementation:

VDM-SL Java

reg: Patient-set private VDMSet reg;
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The invariant checks the cardinality of the reg set, the card method of VDMSet can
be used here.

VDM-SL Java

inv mk-PatientRegister (r) 	 card r � LIMIT public boolean inv ()

{

return reg.card() � � LIMIT;

}

The constructor for this class should ensure the patient register is empty. This can
be achieved by calling the empty VDMSet constructor. As usual, we check the invari-
ant before completing the method:

VDM-SL Java

init mk-PatientRegister (r) 	 r � { } public PatientRegister ()

{

reg � new VDMSet();

VDM.invTest(this);

}

Now, we can move on to look at the operations.

6.4.3 THE OPERATIONS
We begin with the addPatient method. Take a look at the translation before we 
analyse it:

VDM-SL Java

addPatient (patientIn: Patient) public void addPatient(Patient patientIn)

ext wr reg: Patient-set {

pre patientIn � reg � card reg � LIMIT VDM.preTest(reg.doesNotContain(patientIn)

post reg =  � {patientIn} &&reg.card()�LIMIT);

reg � reg.union(new VDMSet(patientIn));

VDM.invTest(this);

}

reg

Looking at the header first, notice how the token Patient type appears in the Java
implementation as well as the VDM specification. Even if we were later to modify the
Patient class we would not need to modify this PatientRegister class.

The precondition requires a check for non-membership of a set. The
doesNotContain method is used here to check for non-membership.
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reg � reg.union(new VDMSet(patientIn));

VDM.invTest(this);

The postcondition contains a single equality. As we discussed in Chapter 4, an
equality such as this can be satisfied by an assignment. The union method of VDMSet
is required. The singleton set {patientIn} is implemented by calling the appropriate
VDMSet constructor:

As this method has write access to the state the invariant is checked before completion:

The removePatient method follows a similar pattern:

VDM-SL Java

removePatient (patientIn: Patient) public void removePatient(Patient patientIn)
ext wr reg: Patient-set {

pre patientIn � reg VDM.preTest(reg.contains(patientIn));

post reg = reg \ { patientIn} reg � reg.difference(new VDMSet(patientIn));

VDM.invTest(this);

}

The getPatients method has no precondition and returns the value of the reg set.

VDM-SL Java

getPatients ( ) output: Patient-set public VDMSet getPatients()
ext rd reg: Patient-set {

pre TRUE return reg;

post output � reg }

Again, notice the fact that the return type in the Java method is given as VDMSet.
Unlike the VDM specification, the type of the elements of the set (Patient) is not
specified in the Java header. Now, look at the translation of the isRegistered operation:

VDM-SL Java

isRegistered (patientIn: Patient) query: � public boolean isRegistered(Patient patientIn)

ext rd reg: Patient-set {

pre TRUE return reg.contains(patientIn);

post query ⇔ patientIn � reg }
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The postcondition contains an equivalence. As we demonstrated in Chapter 4 
this can be satisfied by evaluating and returning the appropriate test. In this case the
test requires us to check whether or not the given patient is present in the set. The
contains method of VDMSet allows us to do this. Finally, here is the translation of
the numberRegistered method:

VDM-SL Java

numberRegistered () total: � public int numberRegistered()

ext rd reg: Patient-set {

pre TRUE return reg.card();

post total � card reg }

That completes our discussion of the operations specified for the PatientRegister
class. As we mentioned in Chapter 4, as well as the operations specified in VDM, 
it is useful to include a toString method for the final class. The complete code list-
ing for the PatientRegister class, including a toString method, is given below:

The PatientRegister class

class PatientRegister implements InvariantCheck
{

// constant value
public static final int LIMIT � 20;

// state attribute

private VDMSet reg;

// initialize the state

public PatientRegister()

{

reg � new VDMSet();

VDM.invTest();

}

// state invariant

public boolean inv()

{

return reg.card()� � LIMIT;
}

// operations

public void addPatient(Patient patientIn)

{

VDM.preTest(reg.doesNotContain(patientIn));
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6.5 Implementing the Airport Specification
In the previous chapter we presented the formal specification of an Airport
class. Following the guidelines we have presented in this chapter and in Chapter 4, 
we present the Java implementation of this class. This specification also defined a
token type:

reg � reg.union(new VDMSet(patientIn));
VDM.invTest(this);

}

public void removePatient(Patient patientIn)
{

VDM.preTest(reg.contains(patientIn));
reg � reg.difference(new VDMSet(patientIn));
VDM.invTest(this);

}

public VDMSet getPatients()
{

return reg;
}

public boolean isRegistered(Patient patientIn)
{

return reg.contains(patientIn);
}

public int numberRegistered()
{

return reg.card();
}

// additional toString method
public String toString()
{

return “the register: “�reg;
}

}

Aircraft � TOKEN

As before, we implement this as an Aircraft class by extending the VDMToken
type:

The Aircraft class

class Aircraft extends VDMToken

{

public Aircraft (String valueIn)
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Here is the code for the Airport class. Examine it closely and compare it to the 
original specification:

The Airport class

class Airport

{

// state attributes

private VDMSet permission;

private VDMSet landed;

// initialize the state

public Airport()

{

permission � new VDMSet();

landed � new VDMSet();

VDM.invTest(this);

}

// state invariant

public boolean inv()

{

return landed.isASubsetOf(permission);

}

// operations

public void givePermission(Aircraft craftIn)

{

VDM.preTest(permission.doesNotContain(craftIn));

permission � permission.union(new VDMSet (craftIn));

VDM.invTest(this);

}

public void recordLanding(Aircraft craftIn)

{

super (valueIn);

}

}



108 Formal Software Development

{

VDM.preTest(permission.contains(craftIn) && landed.doesNotContain(craftIn));

landed � landed.union(new VDMSet (craftIn));

VDM.invTest(this);

}

public void recordTakeOff(Aircraft craftIn)

{

VDM.preTest(landed.contains(craftIn));

landed � landed.difference(new VDMSet(craftIn));

VDM.invTest(this);

}

public int numberWaiting()

{

return (permission.difference(landed)).card();

}

public VDMSet getPermission()

{

return permission;

}

public VDMSet getLanded()

{

return landed;

}

public String toString() // additional toString method

{

return “Permission: “ � permission � “\nLanded: “� landed;

}

}

Again, notice the addition of a toStringmethod. We leave the testers for both this
class and the PatientRegister class as exercises.
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1. In exercise 1 of the previous chapter you were given four sets to consider:
a � {1, 3, 5, 2} b � {3, 2} c � {5, 3, 7, 9} d � {2, 3} 
Write a tester program to implement these four sets and evaluate all the expressions
from the same question.

2. Test the PatientRegister class by developing an appropriate tester program.
3. Make the amendments to the Airport class you considered in exercise 2 of the last

chapter.
4. Test the Airport class by developing an appropriate tester program.
5. Implement the AmbulanceMonitor class you specified in exercise 3 of the last chap-

ter.
6. Test the AmbulanceMonitor class by developing an appropriate tester program.

EXERCISES





CHAPTER 7
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7.1 Introduction
In Chapter 5 you saw how the set type is used in VDM-SL specifications. In this chapter
we will study a different type of collection, known as a sequence.

A sequence differs from a set in two principal ways:

● A sequence is an ordered collection of objects.
● In a sequence, repetitions are significant.

We begin by explaining the notation for using a sequence in VDM-SL, and then go
on to explore the sequence operators. We then move on to look at two applications
that make use of the sequence type.

7.2 Notation
A sequence is specified by enclosing its members in square brackets. In general terms
we could define a particular sequence, s, as follows:

s � [ a, d, f, a, d, d, c ]

A sequence representing a queue of people, say, at a bus-stop could be defined as1

queue � [ MICHAEL, VARINDER, ELIZABETH, WINSTON, JUDITH]

It is important to note that because a sequence is an ordered collection, then, 
for example:

[ a, d, f ] ≠ [ a, f, d ]

The empty sequence is expressed as:

[ ]

The elements of a sequence are numbered, starting from 1, from left to right. We
can refer to a particular element of a sequence by placing the position of the element

1 We are using small caps to represent values (as opposed to variables, which are italicized).



in brackets. For example, using the above sequences:

s(3) � f

queue(4) � WINSTON

If the position is invalid, then the value associated with that position is undefined. 
For example, referring to the sequence s above, s(10) is undefined.

7.3 Sequence Operators
The len operator gives us the length of the sequence. Using the above examples:

len s � 7
len queue � 5

The elems operator returns a set that contains all the members of the sequence 
(it therefore removes the duplicates):

elems s � {a, d, f, c}
elems queue � {MICHAEL, VARINDER, ELIZABETH, WINSTON, J UDITH}

The head (hd) operator gives us the first element in the sequence; the tail (tl) 
operator gives us a sequence containing all but the first element:

hd s � s(1) � a
tl s � [d, f, a, d, d, c]

hd queue � MICHAEL

tl queue � [VARINDER, ELIZABETH, WINSTON, J UDITH]

The result of both hd[] and tl[] is undefined. Notice that hd returns an element,
whereas tl returns a sequence.

The concatenation operator (^) operates on two sequences, and returns a
sequence that consists of the two sequences joined together:

if first � [ w, e, r, w ]
and second � [ t, w, q ]
then
first^second � [ w, e, r, w, t, w, q ]

The override operator, †, takes a sequence and gives us a new sequence with a par-
ticular element of the old sequence overridden by a new element. The generalized
form of this expression is:

s † m

where s is a sequence and m is a map – a VDM data type that you have not yet come
across. Maps will be dealt with fully in Chapter 11; for now you can see from the 
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following example how the override operator works:

[a, c, d, e] † {2 � x, 4 � y} � [a, x, d, y]

In this example, the element at position 2 has been overridden with the value x, and
the element at position 4 has been overridden with the value y. The override operator
is undefined if any index is invalid.

The inds operator returns a set of all the indices of the sequence. Thus, using the
previous examples:

inds s � {1, 2, 3, 4, 5 , 6, 7}
inds queue � {1, 2, 3, 4, 5}

A subsequence operator is defined to allow us to extract a part of a sequence
between two indices. For example, using, s above:

subseq(s, 2, 5) � [d, f, a, d]

The language allows us to write this in the following, more convenient, way:

s(2, … , 5) � [d, f, a, d]

With two exceptions, the subsequence operator is undefined if either index is out of
range, or if the first index is greater than the second. The exceptions are defined 
especially for the boundaries, in order to enable us to extract empty sequences. So,
again using the sequence s above (which has a length of 7):

s(1, … ,0) � []

and

s(8, … , 7) � []

You should also note that:

s(2, … , 2) � [d]

7.4 Defining a Sequence by Comprehension
We saw in Chapter 5 that it is possible to define a set by comprehension. Similarly, 
we can define a sequence by comprehension. For example, if we were interested in 
the sequence of odd numbers from 1 to 20 we could define this implicitly as follows:

[ a | a � {1, … , 20} ● is-odd(a)]

where is-odd is a function that returns TRUE if a is odd and FALSE if a is even.
More generally sequence comprehension takes the following form:

[ expression(a) | a � SomeSet ● test (a) ]
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where SomeSet must be a collection of numeric values. When constructing the
sequence, these values are considered in order, smallest first.

Often sequence comprehension is used to ‘filter’ a sequence. For example, if the
sequence s1 were defined as follows:

s1 � [2, 3, 4, 7, 9, 11, 6, 7, 8, 14, 39, 45, 3]

and s2 were defined as

s2 � [ s1(i) | i � inds s1 ● s1(i) � 10]

then s2 would evaluate to the sequence [11, 14, 39, 45].

7.5 Using the Sequence Type in VDM-SL
We saw previously that to declare a variable to be of a set type, we append the word -set
to the type contained in the set. To declare a variable to be of type sequence we place an
asterisk after the name of the type contained within the sequence.

For example, the statement

seq : �*

declares a variable seq to be a sequence of integers.
If we had previously declared a type SpaceCraft then we could declare a variable

convoy, for example, as follows:

convoy : SpaceCraft*

7.6 Specifying a Stack
The first application of a sequence that we shall develop will be a simple stack. A stack
is an important data structure in computer science, and, as you will be aware, is an
ordered list that obeys a last-in-first-out (LIFO) protocol. Thus, items are added to the
list, and when it comes to the time that an item is to be removed, then this item will
be the last one that was added. We often conceptualize a stack as having a top and a
bottom (see Figure 7.1), items entering at the top and leaving from the top.
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TOP

BOTTOM

enter exit

Figure 7.1 A stack



It is conventional to refer to the operations that add and remove items from a stack
as push and pop respectively, and we shall follow that convention here. The pop
operation that we will specify will also return the item that has been removed. We will
also specify an isEmpty operation.

We begin, as usual, with the UML diagram, which is shown in Figure 7.2.
We are going to create a generic stack by specifying a token type called Element –

this could be defined in detail at implementation time, but for the purposes of speci-
fication its internal details are not relevant. We can now proceed to the specification
of the stack in VDM-SL.

7.7 Specifying the State of the Stack
Before specifying the state, we need, as usual, to identify any types that we will use in
our specification. All we have to do is to define our ‘base’ type, Element:

As you can see from the UML diagram, the stack must contain a collection of 
elements; as this must be an ordered collection we will choose the sequence type – be
careful, by the way, not to confuse the UML notation for a collection (an asterisk in
square brackets), with the VDM notation for a sequence (an asterisk after the type
name).

Our state is specified as follows:
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Stack

stack: Element[*]

push(Element)

pop(): Element

isEmpty(): Boolean

Figure 7.2 The UML specification for a Stack class

types
Element � TOKEN

The initialization clause states simply that the stack must be empty on creation. We
have not placed any constraints on the stack (such as imposing a maximum length for
example), nor are there any intrinsic constraints, thus making an invariant unnecessary.

We can now go on to specify the operations.

state Stack of

stack : Element*
init mk-Stack(s) 	 s � []

end



7.8 Specifying the Operations on the Stack
We will begin with the push operation, which we specify as follows:
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push(itemIn : Element)
ext wr stack : Element*
pre TRUE

post stack � [itemIn] ^stack

pop() itemRemoved : Element
ext wr stack : Element*
pre stack ≠ []
post stack � tl � itemRemoved � hd stackstack

isEmpty() query : �
ext rd stack : Element*
pre TRUE

post query ⇔ stack � []

You can see that it is straightforward – in the postcondition we make use of the 
concatenation operator (^) to append the existing stack to the new item; after 
the operation is performed the new item will be at the head of the stack. Notice that
the concatenation operator requires two sequences as arguments, so we must create a
unitary sequence containing just our new item that is then concatenated with the old
stack.

Now the pop operation:

Here we have a precondition that records the restriction that items cannot be popped
from an empty stack. The postcondition consists of two conjuncts. The first of these states
that the new stack should be identical to the old stack, but with the head removed – that
is, to the tail of the old stack. The second conjunct is concerned with reporting on
which element has been removed; we state that the output value, itemRemoved,
should be equal to the last element added, namely the head of the old sequence.

Finally we come to the isEmpty operation. Again, this is straightforward, and does
not require further explanation, as you have seen operations of this type before.

7.9 Rethinking our Airport System
Now that we have the benefit of a new type, we can revisit the airport system from
Chapter 5, and can specify a new, more realistic system. In our new system, when an
aircraft is to take off from its original airport, then at that time it requests permission
to land at our airport. When it approaches the airport it is placed in a queue, and must
circle the airport until a runway becomes available. Only aircraft that have permission
to land are allowed to circle. The circling aircraft are landed on a first-come-first-
served basis.



7.9.1 RESPECIFYING THE STATE
The state must be respecified with an additional component. Recall that we had 
previously defined the following types:
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types
Aircraft � TOKEN

state Airport2 of
permission : Aircraft-set
landed : Aircraft-set
circling : Aircraft*

We will call our new software system Airport2. Our new state definition becomes:

You can see that we have added the component circling, which is declared as a
sequence of Aircraft.

Now we also have to rethink our initialization clause and our invariant. The initial-
ization clause is straightforward – we just have to ensure that the sequence starts off
empty, as well as the other two components:

The invariant is a little more complicated:

● In addition to the fact that the landed aircraft must have been granted permission
to land, this now has to be true for the circling aircraft as well.

● There must never be an aircraft in the circling queue that is also in the set of landed
aircraft.

● All aircraft must be unique – this did not present a problem before, because we used
sets only, and duplicates are not counted in a set. But for a sequence this is not the
case, and we have to add to our invariant to ensure that this is always the case.

In regard to the last point, it will be useful to define a function, isUnique, which
receives a sequence of aircraft and reports on whether or not that sequence contains
unique items only:

init mk-Airport2(p, l, c) 	 p � { } � l � { } � c � [ ]

isUnique(seqIn : Aircraft*) query : �
pre TRUE

post query ⇔ ∀ i1, i2 � inds seqIn ● i1 ≠ i2 ⇒ seqIn(i1) ≠ seqIn(i2)

The expression on the right-hand side of the equivalence operator in the 
postcondition looks a little complicated at first, but is actually quite easy to unravel. 
We are simply saying that for each pair of indices in the sequence – that is 1 and 1, 



1 and 2, 2 and 1, 2 and 2, and so on – the items at that index must not be the same.
We do, of course, have to exclude the case when the indices are equal, when obviously
the items will also be equal!

We could actually have expressed our postcondition in the following way:

query ⇔ card elems seqIn � len seqIn

Remember that the elems operator returns a set of all the elements in the sequence,
and therefore would remove the duplicates. Thus, if the cardinality of this set were
equal to the length of the sequence this must mean that the sequence contained no
duplicates.

Although the second method looks a little neater than the first, it is important that
you understand the first method, as there will be occasions in future when you will
have to use that approach – you will see the reason for this once you have covered
composite objects in Chapter 9.

We can now use this function in our invariant:
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inv mk-Airport 2(p,l,c) 	 l � p

� elems c � p

� elems c ∩ l � { }
� isUnique(c)

allowToCircle (craftIn : Aircraft)

ext wr circling : Aircraft*

rd permission : Aircraft-set

rd landed : Aircraft-set

pre craftIn � permission � craftIn � elems circling � craftIn � landed

post circling � ^ [craftIn]circling

Note that we have had to use the elems operator to convert the sequence to a set in
order to use the set operators.

7.9.2 RESPECIFYING THE OPERATIONS
The operations givePermission, recordTakeOff, numberWaiting and atAirport, as well
as getPermission and getLanded, access only the permission and landed components,
and do not therefore need to be changed. The meaning of recordLanding will change
in light of our new specification, and we will describe this in a moment. However,
before we do that, there is a need for two new operations. One is a simple getCircling
operation, while the other is an operation that records the fact that an aircraft has
been allowed to circle the airport. We will call this allowToCircle. Its specification is as
follows:



We can now consider the recordLanding operation. The process is that on completion
of the operation the first item in the circling queue will have been removed from this
queue, and will be contained in the set of aircraft that has landed. We no longer need
to specify which aircraft to land, as it will always be the first one in the queue. Also,
we no longer need to check whether the aircraft has permission – this was checked
before it was allowed to circle, so it would not be in the circling queue if it did not have
permission.

The operation is now specified as follows – notice how useful the hd and tl
operators are:
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recordLanding( )

ext wr circling : Aircraft*

wr landed : Aircraft-set

pre circling ≠ []

post landed � ∪ { hd } � circling � tl circlingcirclinglanded

types

Aircraft � TOKEN

state Airport2 of

permission : Aircraft-set

landed : Aircraft-set

circling : Aircraft*

inv mk-Airport2(p,l,c) 	 l � p

� elems c � p

� elems c ∩ l � { }

� isUnique(c)

init mk-Airport2(p, l, c) 	 p � { } � l � { } � c � [ ]

end

functions

isUnique(seqIn : Aircraft*) query : �

pre seqIn ≠ []

post query ⇔ ∀ i1, i2, � inds seqIn ● i1 ≠ i2 ⇒ seqIn(i1) ≠ seqIn(i2)

That completes the respecification of the airport software. We present the complete
specification of the new software below:
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operations

getPermission() permissionOut : Aircraft-set

ext rd permission: Aircraft-set

pre TRUE

post permissionOut � permission

getLanded() landedOut : Aircraft-set

ext rd landed : Aircraft-set

pre TRUE

post landedOut � landed

getCircling() circlingOut : Aircraft*

ext rd circling : Aircraft*

pre TRUE

post circlingOut � circling

givePermission (craftIn : Aircraft)

ext wr permission: Aircraft-set

pre craftIn � permission

post permission � ∪ {craftIn}

allowToCircle (craftIn : Aircraft)

ext wr circling : Aircraft*

rd permission : Aircraft-set

rd landed : Aircraft-set

pre craftIn � permission � craftIn � elems circling � craftIn � landed

post circling � ^ [craftIn]

recordLanding( )

ext wr circling : Aircraft*

wr landed : Aircraft-set

pre circling ≠ []

post landed � ∪ { hd } � circling � tl

recordTakeOff (craftIn : Aircraft)

ext wr landed: Aircraft-set

pre craftIn � landed

circlingcirclinglanded

circling

permisssion



7.10 Some Useful Functions to Use with Sequences
You have seen that VDM-SL provides a head and a tail operator to use with sequences.
There are sometimes occasions (in our Stack example for instance) when it would be
useful to have a function that returns the last element in a sequence, and one that
returns the sequence with the last element removed. We provide such functions
below, using the generalized type Element. You should note of course that these 
are not standard VDM functions, and should you wish to use or adapt them in your
specifications you must include them in your functions clause.

last(sequenceIn : Element*) elementOut : Element
pre sequenceIn ≠ []
post elementOut � sequenceIn(len sequenceIn)

allButLast(sequenceIn : Element*) sequenceOut : Element*
pre sequenceIn ≠ []
post sequenceOut � sequenceIn(1, … , (len sequenceIn � 1))

Finally, it is very useful to have a find function, which will return the index of a 
particular element. The meaning of such a function could be slightly different
depending on whether or not the sequence contains unique elements. In the case
where the elements are unique, there is only one interpretation of a find function. 
It could be specified as:

find(sequenceIn : Element*, element : Element) position : �
pre element � elems sequenceIn
post sequenceIn(position) � element

Consideration of the case where the elements are not necessarily unique brings
home the non-algorithmic nature of implicit specification. The above function would
be satisfied by an implementation that returned any position in which the chosen 
element was present. If, for example, we were referring to the position of banana in
the sequence:

[APPLE, BANANA, PLUM, PEAR, BANANA, BANANA, MANGO]

then a program that returned any of the values 2, 5 or 6 would satisfy the postcondi-
tion of the find function. You should note that a function such as this, which can be
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post landed � � {craftIn} � permission � � {craftIn}

numberWaiting( ) total : �

ext rd landed : Aircraft-set

rd permission : Aircraft-set

pre TRUE

post total � card(permission\landed)

permisssionlanded



satisfied by any one of a number of different values is referred to as an underspeci-
fied function.

Depending on the nature and purpose of the software being specified, the above
definition may or may not be satisfactory – it would depend on the requirements. If
the requirements specifically stated, for example, that the first position must be
returned, then the function would need to be modified as follows:

findFirst(sequenceIn : Element*, element : Element) position : �
pre element � sequenceIn

post sequenceIn(position) � element � ∀i � inds sequenceIn ● sequenceIn (i) � 
element ⇒ position � i

Here the second conjunct ensures that the position returned is the first matching item
in the sequence.
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1. Given

s1 � [10, 3, 2, 10, 3] s2 � [3]

Write down values of the following:

(a) s1 (3)
(b) s2 (3)
(c) inds s1
(d) elems s1
(e) s2 ^ s1
(f) len (s1 ^ s2)
(g) s2 ^ [ ]
(h) s1(3, … ,5)
(i) s1(6, … ,5)
(j) s1 † {4 � 20}
(k) hd s2
(l) tl s2

2. Make the following changes to the Stack application that we specified in this chapter:

(a) Specify an invariant that restricts the number of elements on the stack to 20.
(b) Make any changes to the operations that are necessary in light of the above 

invariant.
(c) Specify an isFull operation.

3. Write the specification for a queue of elements (that is a list obeying a first-in-first-out
(FIFO) protocol).

4. A priority queue is a specialized version of a regular queue. It therefore operates on
a FIFO protocol but with a difference. Each item in the queue has a priority – either HIGH

or LOW – associated with it. When it is time to remove an item from the queue, the item
to be removed will be the first high-priority item in the queue. Only when there are no
high-priority items in the queue should a low-priority item be removed.

EXERCISES
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One way to think of a priority queue is to consider it as consisting of two 
queues – a high-priority queue and a low-priority queue. As long as there are items in
the high-priority queue then items are always removed from this queue; only when the
high-priority queue is empty are items removed from the low-priority queue.

(a) Write the specification for a priority queue in VDM-SL. You should include opera-
tions add, remove and showNext.

(b) Modify your specification so that duplicates (for the system overall) are not allowed.
(c) Write a changePriority operation that accepts an element, together with its current

priority, and changes it to the opposite priority; in so doing it places the element at
the end of the appropriate queue. You will find that utilizing a find function as
described in Section 7.10 is very helpful.
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8.1 Introduction
In Chapter 6 we described the VDMSet class that we developed to facilitate the 
implementation of sets in Java. In this chapter we do the same thing with a
VDMSequence class, which once again makes use of the Vector class that we discussed
in Chapter 6. This class can be downloaded from the website. We begin by describing
the methods of the VDMSequence class, and then go on to use this class, along with
the VDMSet class, to implement the enhanced Airport application that we specified 
at the end of Chapter 7.

8.2 The VDMSequence Class 
As we have indicated, the class contains a single attribute, a Vector, which holds the
elements of the sequence:

import java.util.*;
class VDMSequence
{

private Vector theSequence;
// methods go here

}

VDM-SL Java

someSequence : SomeType* VDMSequence someSequence;

8.2.1 THE CONSTRUCTORS
A number of constructors is provided, similar to those provided for the VDMSet class
described in Chapter 6. They are summarized in Table 8.1.

Thus, if a sequence has been declared in a VDM specification, it can be declared as an
object of the VDMSequence class in Java. For example:



Table 8.2 provides examples of how these constructors are used.
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Table 8.1 VDMSequence constructors

Constructor Description

VDMSequence() Empty sequence constructor.

VDMSequence(Object[]) Explicit sequence constructor – creates a new sequence from an array of
objects passed as a parameter. Overloaded for an array of scalar types
int, char and double.

VDMSequence(Object) Singleton sequence constructor – creates a new sequence containing the
single object passed in as a parameter. Overloaded for the scalar types
int, char and double.

Table 8.2 VDMSequence constructors – examples

VDM-SL Java

Empty sequence constructor
someSeq � [] someSeq � new VDMSequence();

Explicit sequence constructors
someSeq � [“RED”, someSeq

“BLUE”, “RED”] � new VDMSequence (new Object[] {“RED”, “BLUE”, “RED”});
someSeq � [1, 1, 3] someSeq � new VDMSequence (new int[] {1, 1, 3});
someSeq � [1.1, 2.39, 0.8] someSeq � new VDMSequence (new double[] {1.1, 2.39, 0.8});
someSeq � [‘A’, ‘B’, ‘C’] someSeq � new VDMSequence (new char[] { ‘A’, ‘B’, ‘C’});

Singleton sequence constructors
someSeq � [“RED”] someSeq � new VDMSequence(“RED”);
someSeq � [2] someSeq � new VDMSequence(2);
someSeq � [1.1] someSeq � new VDMSequence(1.1);
someSeq � [‘C’] someSeq � new VDMSequence(‘C’);

Table 8.3 The VDMSequence operators

Method Description

int len() Returns the length of the sequence.
VDMSet elems() Returns a VDMSet constructed from the sequence as

prescribed by the elems operator.

VDMSequence concat Accepts a VDMSequence, and returns a new
(VDMSequence) VDMSequence constructed by concatenating the received

sequence onto the original sequence.

VDMSequence override Accepts a VDMMap and returns a sequence with its elements
(VDMMap) overridden as determined by the elements of the map

(you should return to this after you have studied maps in 
Chapters 11 and 12).

8.2.2 THE SEQUENCE OPERATORS
Just as we did with the VDMSet, we have provided methods for all the sequence oper-
ators within the VDMSequence class. These are summarized in Table 8.3.



Table 8.4 provides examples of the use of these operators.
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Table 8.3 (continued )

Object hd() Returns the head of the sequence. Throws a
VDMException if the sequence is empty.

VDMSequence tl() Returns the tail of the sequence. Throws a VDMException
if the sequence is empty.

VDMSet inds() Returns a VDMSet of Integer objects representing the
indices of the sequence.

VDMSequence subseq Accepts two integers representing the first and second 
(int, int) index of a subsequence, which it constructs from the original

sequence and returns. Throws a VDMException if either
index is out of bounds.

Object index(int) Accepts an integer representing an index, and returns the
element at that index. Throws a VDMException if the
index is invalid.

Table 8.4 VDMSequence operators – examples

VDM-SL Java

len someSeq someSeq.len();
elems someSeq someSeq.elems();
seqA ^ seqB seqA.concat(seqB);
someSeq † {2 �”RED”} someSeq.override(new VDMMap(new 

Maplet(2,”red”)));
(The VDMMap and Maplet classes will be discussed in Chapter 12)

hd someSeq someSeq.hd();
tl someSeq someSeq.tl();
inds someSeq someSeq.inds();
someSeq(5,9) someSeq.subSeq(5,9);
someSeq(6) someSeq.index(6);

Table 8.5 Additional VDMSequence operators

VDMSequence method Description

boolean equals(Object) Accepts an Object as a parameter, and returns
true if this object is identical to the original
sequence, otherwise returns false.

String toString() Returns a string representation of the sequence.

Enumeration getElements() Returns an enumeration object to allow the
elements of the sequence to be scanned.

boolean isEmpty() Returns true if the sequence is empty, otherwise
returns false.

As with the VDMSet class from Chapter 6, additional methods have been provided 
in order to simplify the process of testing and implementation. These are shown in
Table 8.5.



8.2.3 SEQUENCE COMPREHENSION
You will recall from Chapter 7 that sequence comprehension takes the following form:

[ expression(a) | a � SomeSet ● test (a) ]

where SomeSet must be a collection of numeric values.
We have provided a number of overloaded methods called sequenceComp that

allow sequences to be constructed in this way, just as we did for sets. If SomeSet is 
a set of integers, for example, then one of the following methods can be used:

VDMSequence sequenceComp(VDMSet, TestableInt)
VDMSequence sequenceComp(ExpressionInt, VDMSet)
VDMSequence sequenceComp(ExpressionInt, VDMSet,TestableInt)

These are all static methods, and are therefore called in conjunction with the class
name, VDMSequence.

As an example, consider the following sequence:

s1 � [2, 3, 4, 7, 9, 11, 6, 7, 8, 14, 39, 45, 3]

If s2 were defined as

s2 � [ s1(i) | i � inds s1 ● s1(i) � 10]

then we could implement this as:
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s2 � VDMSequence.sequenceComp(
new ExpressionInt() // the expression
{

public Object action(int i)
{

return s1.index(i);
}

},
s1.inds(), // the set
new TestableInt() // the test
{

public boolean test( int i)
{

Integer localInt � (Integer) s1.index(i);
return localInt.intValue() � 10;

}
});

Similar methods are provided for the other primitive types, char and double; methods
are not provided for Objects, since the set in question must be able to be ordered.



8.3 Implementing the Enhanced Airport Specification
You will recall from Chapter 7 that once we had learnt about the sequence type in
VDM-SL we were able to rethink the airport software from the previous chapters to
make it more complex and closer to a real-life system.

The implementation – which once again uses an Aircraft class, which will have
at least the basic implementation described in Chapter 6 – is for the most part straight-
forward; the same principles apply to the implementation of sequences as to that of
sets. The only really complex aspect to this implementation is the isUnique
function, which requires some explanation. Study the code shown below, and we will
discuss it afterwards.
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The Airport2 class

class Airport2 implements InvariantCheck

{

// state attributes

private VDMSet permission;

private VDMSet landed;

private VDMSequence circling;

// initialize the state

public Airport2()

{

permission � new VDMSet();

landed � new VDMSet();

circling � new VDMSequence();

VDM.invTest(this);

}

//invariant test

public boolean inv()

{

return landed.isASubsetOf(permission)

&& circling.elems().isASubsetOf(permission)

&& circling.elems().intersection(landed).isEmpty()

&& isUnique(circling);

}

// function

private boolean isUnique(final VDMSequence seqIn)

{

return VDM.forall(seqIn.inds(), new TestableInt() //outer forall
{

public boolean test (final int i1) // first anonymous inner class

{

return VDM.forall(seqIn.inds(), new TestableInt() // inner forall

{

public boolean test(int i2) // second anonymous inner class

{

return i1 ! � i2 && !seqIn.index(i1). equals(seqIn.index(i2))

||

i1 � � i2;
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}

} );

}

} );

}

// operations

public VDMSet getPermission()

{

return permission;

}

public VDMSet getLanded()

{

return landed;

}

public VDMSequence getCircling()

{

return circling;

}

public void givePermission(Aircraft craftIn)

{

VDM.preTest(permission.doesNotContain(craftIn));

permission � permission.union(new VDMSet(craftIn));

VDM.invTest(this);

}

public void allowToCircle(Aircraft craftIn)

{

VDM.preTest(permission.contains(craftIn)

&& circling.elems().doesNotContain(craftIn)

&& landed.doesNotContain(craftIn));

circling � circling.concat(new VDMSequence(craftIn));

VDM.invTest(this);

}

public void recordLanding()

{

VDM.preTest(!circling.isEmpty());

landed � landed.union(new VDMSet(circling.hd()));

circling � circling.tl();

VDM.invTest(this);

}

public void recordTakeOff(Aircraft craftIn)

{

VDM.preTest(landed.contains(craftIn));

landed � landed.difference(new VDMSet(craftIn));

permission � permission.difference(new VDMSet(craftIn));

VDM.invTest(this);

}

public int numberWaiting()

{

return permission.difference(landed).card();



8.4 Analysis of the Airport2 Class
As we have said, the implementation of the isUnique function could do with some
explanation. At first glance it looks rather cumbersome and needs some unravelling.

First, however, we must introduce a method of our VDM class that you have not
previously seen in action, namely the forall method, which implements the ‘forall’
quantifier, ∀. This takes the form:
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}

public String toString()

{

return “Permission: “ � permission � “\nCircling: “ � circling � “\nLanded: “ � landed;

}

}

public static boolean forall(VDMSet set, Testable obj)

The Testable interface was discussed in the Chapter 6 – you saw there how it is
used with an anonymous inner class. The forall method uses the same technique –
each element of a set is subjected to a test, and the method returns true if all 
elements pass the test, or false otherwise. The test is defined by means of an
anonymous inner class that implements a test method.

As mentioned in Chapter 4, as well as the forall method, the VDM class contains
an exists method and a uniqueExists methods which operate in a similar way;
all three methods have been overloaded to accept objects of the types TestableInt,
TestableChar and TestableDouble.

Now to return to our isUnique function. In order to understand this, we need to
re-examine the original VDM specification of the function:

isUnique(seqIn : Aircraft*) query : �

pre TRUE

post query ⇔ ∀ i1 ,i2 � inds seqIn ● i1 � i2 ⇒ seqIn( i1) � seqIn( i2)

When we introduced this function in the last chapter, we explained it by saying that
for each pair of indices in the sequence, the items at that index must not be the same
(excluding the case when the indices are equal). In actual fact, the right-hand side of
the equivalence expression in the postcondition is really a short-hand for a longer



expression:
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∀ i1 � inds seqIn ●

∀ i2 � inds seqIn ● i1 � i2 ⇒ seqIn( i1) � seqIn( i2)

private boolean isUnique(final VDMSequence seqIn)
{

return VDM.forall(seqIn.inds(), new TestableInt() // outer forall

{

public boolean test (final int i1) // first anonymous inner class

{

return VDM.forall(seqIn.inds(), new TestableInt() // inner forall

{

public boolean test(int i2) // second anonymous inner class

{

return i1 ! 5 i2 && !seqIn.index(i1).equals(seqIn.index(i2))

||

i1 � 5 i2;

}

}   );

}

}  );
}

You should note that any local variables that are used within an inner class but
declared outside of that class must have been declared as final. Thus, seqIn has
been declared final as it has been referenced within both inner classes; i1 has been
declared final as it has been referenced within the second inner class.

The other methods of the Airport2 class are straightforward, and you should
have no difficulty understanding them. You should note once again how the precon-
dition and the invariant are, where appropriate, tested at the beginning and end of
each operation; you will see how useful this is when you implement a tester as
required in the exercises that follow.

In a sense this can be thought of as a ‘nested’ forall (�) expression, containing an outer
and an inner statement. Thinking of it in this way makes the implementation a little
easier to understand:
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1. In exercise 1 of the previous chapter you were given two sequences to consider:

s1 � [10, 3, 2, 10, 3] s2 � [3]

Write a tester program to implement these sequences and evaluate all the expressions
from the same question.

2. Write a program that tests out the Airport2 class. You might wish to use a menu-
driven program such as the following:

Each menu option can test a method of the Airport2 class – the ‘Show all’ method
can simply make use of the toString method of Airport2.

Look back at the example in chapter 4 to see how the potential exceptions are caught
by means of a try…catch block within the menu loop.

3. Implement the specification of the Stack developed in Chapter 7.
4. Test the Stack class by developing an appropriate tester program.
5. Implement the priority queue that you specified in exercise 4 of the last chapter.
6. Test the PriorityQueue class by developing an appropriate tester program.

EXERCISES

AIRPORT TESTER

1. Give permission
2. Allow to circle
3. Record Landing
4. Record take off
5. Get number waiting
6. Show all
7. Quit
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So far, we have always associated a single type with each item of data in our VDM 
specifications. For example, the value of the temperature in the incubator was allocated
an integer type, the status of a robot the Status type, the collection of aircraft landed
at the airport an Aircraft-set type.

There will be occasions, however, when you need to associate more than one type
with an object. This will occur when the object consists of several pieces of data, each
potentially having a different type. For example, if we were developing a software 
system for a car dealership, it might not be possible to associate a single type with a
record for an individual car. The car record might consist of a registration number, 
a year of manufacture and a price, and each of these items of data would have their
own individual type. The appropriate type for the object as a whole would then be a
composite of all the types of its internal data. We call such a type a composite object type
in VDM-SL.

9.1 Defining Composite Object Types
Composite objects are very similar to the concept of records in a database. In fact, they
are very often referred to as record types in VDM-SL. To define a type to be composite
(that is to be composed of more than one type) we use a composite type definition.
Composite types are defined as follows:

TypeName :: fieldname1 : Type1
fieldname2 : Type2

:

where the symbol ‘::’ is read ‘is composed of ’.
For example, consider a type Time, which may be useful in many applications. Assume

that a time value consists of an hour, minute and second value. Now the composite
object type Time would need to combine the types for hour, minute and second into a
single type, Time. This can be achieved as follows (also under the types clause)

Time:: hour: �
minute: �
second: �



Here, the composite type Time is composed of appropriate types for an hour value, a
minute value and a second value. These individual components of a composite type are
referred to as the fields of the composite object so this Time type has three fields. 
In this case the appropriate type for all these fields is natural number. Generally, 
a composite type may have any number of fields and the types of these fields may well
be different from each other.

This Time type can now be used like any other type in your specification. For example,
you could define a set of important times as follows:
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importantTimes : Time-set

inv mk-Airport2(p, c, l) 	 l � p � elems c � p � elems c ∩ l �{}� isUnique(c)
init mk-Airport2(p, c, l) 	 p � { } � l � { } � c � [ ]

At the moment, all we have done is to look at how composite object types 
are defined. We have not created or used any objects from these type definitions yet.
To do so we need to look at the composite object operators.

9.2 Composite Object Operators
The most important composite object operator is the make function (mk-TypeName)
that creates a new object of a given composite type. We have already been using make
functions in our state initialization and invariant clauses. Here, for example, is the ini-
tialization and invariant clause of our Airport2 model from Chapter 7:

In this example, the type name associated with the make function is the name of the
system that we are modelling (Airport2). Any system that we model, be it an Incubator
or an Airport, is itself a user-defined type. Since states that we model in VDM may 
consist of many fields, the type of the state is itself a composite type, composed of the
types of all the state fields. To construct an object of such a type therefore requires a
make function.

The standard template for a make function is as follows:

mk-CompositeObjectTypeName (parameter list)

where the order of items in the parameter list matches the order of fields defined for
the composite object. Clearly there is not a single make function in VDM-SL, but one
per composite object type. The signature of each function will therefore differ. The
Airport2 type consisted of three fields: the first and second are both a set of aircraft,
the third is a sequence of aircraft; so the make function of Airport2 has the following
signature:

mk-Airport2: Aircraft-set � Aircraft-set � Aircraft* → Airport2

The Time type also has three fields, but to construct a Time object the types of the
three fields (hour, minute and day) differ from that of Airport2:

mk-Time: � � � � � → Time



Here is an example of the use of a mk-Time function to create a Time object:

someTime � mk-Time (16, 20, 44)

Of course not all combinations of hour/minute/time are valid. For example, 
we would not want to allow the following:

strangeTime � mk-Time (36, 20, 44)

This time should not be allowed as there are only 24 hours in a day! Just as states can
have invariants defined on them, so can any composite object types you define. Here
is an appropriate invariant added to the Time type definition:
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Time:: hour: �
minute: �
second: �

inv mk-Time (h, m, s) 	 h � 24 � m � 60 � s � 60

As you can see from the invariant, we are assuming the use of a 24-hour clock and we
are allowing values from 0 to 23 for the hour, 0 to 59 for the minute and 0 to 59 for
the second. When specifying systems informally, the use of a 12- or 24-hour timing
system may not be made clear. The invariant of the composite object, however,
removes any ambiguity by recording the choice formally, and makes clear to engineers
developing code from this specification the restrictions that need to be observed for
all objects of this type.

Once an object has been generated using a make function, its values can be inter-
rogated. We can refer to a particular field of a composite object by using a selector
operator. Individual fields are selected (read) in much the same way as object fields
in programming languages, by the dot operator ‘.’ followed by the name of a field. 
For example:

someTime.minute � 20
someTime.hour � 16

The only other composite object operator is a mu (�) function. The mu function
returns one composite object from another but with one or more fields changed. The
fields to modify, and their new values, are specified by one or more maplets. Maplets
will be discussed in detail in Chapter 11, but for now be aware that a maplet consists
of a pair of values separated by a special maplet arrow ( � ). For example, to change
the hour of a particular time we may use the function as follows:

newTime � � (someTime, hour � 15)

This returns an object identical to someTime but with the hour field changed to 15. 
To change the hour and the minute value the following mu function could be used:

thisTime � � (someTime, minute � 0, second � 0)



Although mu functions can be useful, they can always be replaced by an expression
involving a make function and selectors. For example the object thisTime, defined
above using a mu function, could also have been defined as follows:

thisTime � mk-Time(someTime.hour,0,0)

The fields of the old object that are to be left unchanged are selected in the make
function, and the new values of the remaining fields are given explicitly.

A variable in a formal specification is rarely a single composite object. More often
than not attributes are collections of composite objects. So far we have met sets and
sequences as means of specifying collections in VDM-SL, so you will find sets and
sequences of composite objects will be very common models.

9.3 A Specification of a Disk Scanner
Consider a piece of software designed to keep track of damaged blocks on the surface
of a disk. A disk is divided into a number of tracks and each track into a number of 
sectors. A block is identified, therefore, by giving both a track and sector number.
Figure 9.1 gives a simplified UML specification of the DiskScanner class.

You can see in Figure 9.1, that the DiskScanner class is specified as being a collection
of Block records. The details of this Block type need to be analysed further. A block
consists of a track and a sector number. Figure 9.2 gives the UML specification of an
appropriate Block type.

Now, consider the VDM specification of the DiskScanner class. A Block type has been
identified in the UML diagram of Figure 9.1 and informally specified in Figure 9.2. 
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DiskScanner

damagedBlocks: Block [*]

addBlock(Integer, Integer)

removeBlock (Integer, Integer)

isDamaged(Integer, Integer):Boolean

getBadSectors(Integer): Integer [*]

Figure 9.1 UML specification of the DiskScanner class

Block

track: Integer

sector: Integer

Figure 9.2 UML specification of the Block type



A type with several fields such as this can be specified as a composite type in VDM-SL:
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types
Block : : track: �

sector: �

state DiskScanner of
damagedBlocks: Block-set

init mk-DiskScanner (dB) 	 dB � { }

addBlock (trackIn: �, sectorIn: �)
ext wr damagedBlocks: Block-set
pre             mk-Block (trackIn, sectorIn) � damagedBlocks
post damagedBlocks � damagedBlocks ∪ {mk-Block (trackIn, sectorIn)}

removeBlock (trackIn: �, sectorIn: �)
ext wr damagedBlocks: Block-set
pre             mk-Block (trackIn, sectorIn) � damagedBlocks
post damagedBlocks � damagedBlocks \ {mk-Block (trackIn, sectorIn)}

Note that the natural number type is appropriate for track and sector numbers, as
these values can never be non-negative (though they can be zero). In this simplified
version of the system we will not place a restriction on the number of tracks and 
sectors (this is left as an exercise at the end of this chapter).

A single attribute, damagedBlocks, is also identified in Figure 9.1. This represents 
a collection of blocks recorded as damaged. The collection has no ordering and no
repetition, so a set of blocks will suffice here:

Initially no damaged blocks will be recorded:

Notice that no invariant is required on this model so we can move on to the opera-
tion specifications. First the addBlock operation. This operation receives two parame-
ters, representing the track and sector number of a block to be recorded as damaged.
Here is the specification:

The precondition ensures that a block record, composed of the given track and 
sector number, is not currently recorded as damaged. A make function is required to
compose the track and sector number into a Block object. Similarly a make function is
required in the postcondition to record the fact that, upon completion of this 
operation, the block record composed of the given track and sector number should
have been added to the old collection of damaged blocks.

The next operation we will specify is removeBlock. This operation receives a 
track and sector number, and removes the given block record from the collection of
damaged blocks:



As you can see this is very similar to the addBlock operation, except that the 
precondition ensures the given block is initially recorded as damaged, and the post-
condition ensures the given block record is removed from the set damagedBlocks.

The isDamaged operation also receives the track and sector number of a block.
Upon completion, it reports on whether or not the given block is damaged. Read
access only is required here, as the state is not being modified:
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isDamaged (trackIn: �, sectorIn: �) query: �
ext rd damagedBlocks: Block-set
pre TRUE

post query ⇔ mk-Block (trackIn, sectorIn) � damagedBlocks

getBadSectors (trackIn: �) list: �-set
ext rd damagedBlocks: Block-set
pre TRUE

post list � {b.sector | b � damagedBlocks ● b.track � trackIn}

types
Block : : track: �

sector: �
state DiskScanner of

damagedBlocks: Block-set
init mk-DiskScanner (dB) 	 dB � { }
end

The query returns TRUE when the block record, composed of the given track and sec-
tor number, is contained within the damagedBlocks set, and FALSE otherwise.

Finally, the getBadSectors operation returns the sector numbers associated with
damaged blocks within a given track. These sector numbers have no ordering or rep-
etition so a set is appropriate here. Again, this operation requires only read access to
the record of damaged blocks:

The postcondition uses set comprehension to define a set of appropriate sector
numbers. An object selector is used here to examine the track field of each damaged
block. If the track field matches the track sent in as a parameter it is a block we are
interested in:

b�damagedBlocks ● b.track � trackIn

We wish to record only the sector number of the block, so a selector is used to
extract this number from the given block and place it into this set of sector numbers:

b.sector

Here is the complete specification for the DiskScanner class:



In this example we illustrated the use of a set of composite objects. We now turn our
attention to a slightly more complex example that allows us to explore a model involving
a sequence of composite objects.

9.4 A Process Management System
Consider a process management system for a multitasking operating system.
Processes are identified by a unique process identification number (pid). When a
process is created it joins the list of waiting processes and will initially be in the READY

state.
Various algorithms exist for determining the order in which processes are allocated

to the CPU – these include shortest-job-first, round-robin and others. Here we will
specify a simple first-in-first-out policy – this is not the most efficient of scheduling
policies, but a good one to use for illustrative purposes.

When the CPU becomes available, the first READY process in the queue is allocated
to the CPU and removed from the waiting list. Each running process is allotted a fixed
amount of CPU time (a quantum). If a process uses up its allotted time before it 
terminates, it is placed back at the end of the waiting queue with a READY status; if it
has finished, then it is not placed back in the list but is removed from the system.

If the process did not time out, but could not proceed for some reason (such as wait-
ing for an input/output operation), it is placed back at the end of the waiting queue
with a BLOCKED status. When a blocked process is ready to be processed again it is
woken up from its BLOCKED status and is once again in a READY state. Figure 9.3 gives a
state transition diagram summarizing the allowed changes of state for any particular
process.

Figure 9.4 gives the UML specification for the ProcessManagement class. Note that
an operation is provided to cover each state transition.
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operations
addBlock (trackIn: �, sectorIn: �)
ext wr damagedBlocks: Block-set
pre mk-Block (trackIn, sectorIn) � damagedBlocks
post damagedBlocks � damagedBlocks ∪ {mk-Block (trackIn, sectorIn)}

removeBlock (trackIn: �, sectorIn: �)
ext wr damagedBlocks: Block-set
pre mk-Block (trackIn, sectorIn) � damagedBlocks
post damagedBlocks � damagedBlocks \ {mk-Block (trackIn, sectorIn)}

isDamaged (trackIn: �, sectorIn: �) query: �
ext rd damagedBlocks: Block-set
pre TRUE

post query ⇔ mk-Block (trackIn, sectorIn) � damagedBlocks

getBadSectors (trackIn: �) list: �-set
ext rd damagedBlocks: Block-set
pre TRUE

post list � {b.sector | b � damagedBlocks ● b.track � trackIn}



Two types are identified in the UML diagram of Figure 9.4: String and Process. The
String type is predefined in UML. The Process type needs further analysis. A process
consists of an id and a status. Figure 9.5 gives the UML specification of this type.

Before we proceed to formally specify the ProcessManagement class, the Status type
used in Figure 9.5 needs further analysis. The status of a process is either ready or
blocked. An enumerated type is appropriate here (Figure 9.6).
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blockwakeup

timeout

dispatch
terminateadmit

new ready terminatedrunning

blocked

Figure 9.3 A state transition diagram for a process

ProcessManagement

running: String

waiting: Process[*]

admit(String)

dispatch()

timeOut()

block()

wakeUp(String)

terminate()

Figure 9.4 UML specification of the ProcessManagement class

Process

id: String

status: Status

Figure 9.5 UML specification of the Process type



9.4.1 MODELLING THE DATA IN VDM-SL
The String type is predefined in UML but not in VDM-SL. We can define such a type in
VDM-SL as a sequence of characters:
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<<enumeration>>
Status

READY

BLOCKED

Figure 9.6 UML specification of the Status type

types
String � Char*

Status � �READY� | �BLOCKED�

Process :: id : String
status : Status

state ProcessManagement of
running : [String]
waiting : Process*

The Process type of Figure 9.5 will need to be a composite, consisting of the pid and
the process status. Before we define this type, a Status type must be defined from 
Figure 9.6 as follows:

We can now define a Process type as follows:

As indicated in Figure 9.4, the state consists of two attributes, the identification
number of the running process and the collection of waiting processes. The ordering of
these waiting processes is important so we will use a sequence to model this collection:

Notice the square brackets around the String type for the running process. Remember
that this allows a value of nil to be given to this variable. Such a value would indicate
no running process.

The invariant needs to record two restrictions. First, if there is a running process its
identification number should not be the identification number of any process in the
waiting queue. Secondly, no two processes in the waiting queue should have the same



identification number. Here is its specification:
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inv mk-ProcessManagement (run, wait) 	 (run � nil � ¬�i � inds wait ● wait(i).id � run)
�

∀ i, j � inds wait ● i ≠ j ⇒ wait(i).id ≠ wait(j).id

∀ i, j � inds wait ● i ≠ j ⇒ wait(i).id ≠ wait(j).id

init mk-ProcessManagement (run, wait) 	 run � nil � wait � [ ]

types
String � Char*
Status � �READY� | �BLOCKED�

Process :: id : String
status : Status

state ProcessManagement of
running : [String]
waiting : Process*

inv mk-ProcessManagement (run, wait) 	 (run � nil � ¬�i�inds wait ● wait(i).id � run)
�

∀ i, j � inds wait ● i ≠ j ⇒ wait(i).id ≠ wait(j).id
init mk-ProcessManagement (run, wait) 	 run � nil � wait � [ ]
end

In this model we have a sequence of composite objects. As you can see, this means
that we have to combine the syntax for sequences and composite objects in order to
express properties of our model. For example, in the invariant above, we needed to
say that no two processes in the waiting queue should have the same id:

The quantifier names two arbitrary waiting process indices, i and j. The process
identification number of the two processes at these indices are then compared by
looking up the processes in the sequence at those positions and then selecting their id
field:

select the id field of the given process

wait(i).id ≠ wait(j).id

look up the process at sequence position i

Initially no process will be running and no processes will be waiting to run, giving the
following initialization function:

Here is the complete data model:



In order to simplify the specification of the operations, a few auxiliary functions will
prove useful, as is often the case with a relatively complex model such as this.

9.4.2 SOME USEFUL FUNCTIONS
When a process is woken up it will need to have its status changed from BLOCKED to
READY. The process to wake will be determined by submitting a process identification
number. A function, findPos say, that returns the position of a process within a
sequence given the pid of a process, will be useful here. Its specification is very similar
to the find function specified in Chapter 7, except that the sequence being searched
contains composite objects and these objects need to be interrogated with an object
selector to identify the correct process. Here is its specification:
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findPos(qIn : Process*, idIn : String) pos : �
pre ∃p � elems qIn ● p.id � idIn
post qIn(pos).id � idIn

findNext(qIn : Process*) pos : �
pre ∃p � elems qIn ● p.status � �READY�
post qIn(pos).status � �READY� � ¬∃i � {1, … , pos-1} ● qIn(i).status � �READY�

remove(qIn : Process*, posIn : �) qOut : Process*
pre posIn � inds qIn
post qOut � qIn(1, … , posIn-1) ^ qIn(posIn � 1, … , len qIn)

The precondition records the fact that a process with the given pid should exist
within the sequence. The postcondition indicates that the process at the returned
position must have the same pid as that submitted to the function. Because process
identification numbers are unique we know that only one process will have this pid.
Once again, notice how sometimes a composite object has to be selected from a
sequence before its field can be interrogated. For example:

qIn(pos). id � idIn

When dispatching a process, the relevant process in the waiting queue needs to be
identified. A variation of the findPos function, findNext say, will be useful here to
return the position of the correct process to dispatch. Here is its specification:

The precondition records the requirement that a process exists in the sequence which
is in the READY state. The postcondition indicates that the position returned is the
index of a process in the READY state, and that no processes before this index position
should be in the READY state.

Finally, when a process is dispatched, the waiting queue of processes needs to be
compressed to remove the given process. A remove function can be specified for this
purpose:



Here, the precondition records the requirement that the position of the process to
remove be a legal index. The postcondition indicates that the compressed sequence
will consist of the subsequence that comes before the element to remove, concate-
nated to the subsequence that comes after the element to remove.

Taking the time to define extra functions in this way is not essential but it does
greatly reduce the complexity of operation specifications, as you will see in the next
section.

9.4.3 SPECIFYING THE OPERATIONS IN VDM-SL
The first operation we will look at will be the admit operation. This operation takes 
a process identification number and adds it to the waiting queue. The identification
number should not already be in the queue or be the current running process 
identification number.
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admit(idIn: String)
ext wr waiting: Process*

rd running: [String]
pre (running � nil � idIn ≠ running ) � ∀p � elems waiting ● p.id ≠ idIn

post waiting � waiting ^[mk-Process(idIn, �READY�)]

dispatch( )
ext wr running: [String]

wr waiting: Process*
pre running � nil � �p � elems waiting ● p.status � �READY�

post running � waiting (findNext(waiting)).id

� waiting � remove(waiting, findNext(waiting ))

timeOut( )
ext wr running: [String]

Notice the use of the make function in the postcondition to make an appropriate
process to add to the waiting queue. This process will have the given identification
number and will have its status set to READY. Now the dispatch operation. This 
operation takes the next READY process and records it as the running process:

The precondition records the requirement that that there should be no current 
running process and that there should be a waiting process in the READY state. The
postcondition records the fact that, after the operation is executed, the appropriate
process should be running and that this process is removed from the old waiting
queue. Notice how the use of the findNext and remove functions greatly simplified the
specification of this operation.

The timeOut operation returns the running process to the waiting queue and
records its status as READY:



The precondition records the requirement that, prior to the operation, a process
must be running. The postcondition then ensures that, after the operation, no process
will be recorded as running and this process is added to the waiting queue.

The block operation is very similar to the timeOut operation except that when the
process is returned to the waiting queue, its status is not recorded as READY but as
BLOCKED:

Composite Objects     147

wr waiting: Process*

pre running ≠ nil

post waiting � waiting ^ [mk-Process(running, �READY�)] � running � nil

block( )
ext wr running: [String]

wr waiting: Process*
pre running ≠ nil

post waiting � waiting ^ [mk-Process(running, �BLOCKED�)] � running � nil

wakeUp(idIn: String)
ext wr waiting: Process*
pre waiting(findPos(waiting, idIn)).status � �BLOCKED�

post waiting � waiting † {findPos(waiting, idIn) �mk-Process(idIn, �READY�)}

terminate( )
ext wr running: [String]
pre running ≠ nil

post running � nil

The wakeUp operation takes the pid of a BLOCKED process and changes its status back
to READY. Here is its specification:

The precondition records the requirement that the given process is recorded as
BLOCKED before the operation is invoked. Notice the use of the findPos function to
determine the position of the given process in the waiting sequence.

The postcondition uses the sequence override operator (†) to override the given
process with a process that has a READY state. Again, notice the use of the findPos function
to determine the position of the process to overwrite.

Finally, the terminate operation removes the current running process from the 
system:



9.4.4 THE LET … IN CLAUSE
The complexity of operation specifications in the last section was greatly reduced by
the use of additional functions such as findNext and remove. Even with the use of such
functions, however, pre- and postconditions can still involve cumbersome expressions
that can be difficult to follow. For example, look again at the postcondition of the dis-
patch operation:
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post running � waiting (findNext (waiting)).id

� waiting � remove(waiting, findNext(waiting))

post let next � findNext (waiting)

in running � next.id

� waiting � remove(waiting, next)

pre waiting(findPos(waiting, idIn)).status � �BLOCKED�

pre let pos � findPos(waiting, idIn)
in waiting(pos).status � �BLOCKED�

The use of functions allowed this postcondition to be simplified but still produced a
longwinded expression. To improve readability of such expressions, local names can
be given to sub-expressions and these names can then be used in place of the longer
sub-expression throughout the rest of the given pre- or postcondition.

These local names are created in let … in clauses. A let … in clause takes the 
following general form

let name � sub-expression
in expression(name)

Returning to the postcondition of the dispatch operation, we could formulate 
it using a let … in as follows:

Here, a local name (next) is given to a sub-expression (findNext( )). 
This name is then used in place of the sub-expression throughout the postcondition.
This was particularly useful here because the sub-expression repeats in the postcon-
dition, so replacing it with a short name greatly reduces the complexity of the final
expression. However, let … in clauses might be useful even if sub-expressions are 
not repeated, just to simplify the final expression. Here, for example, is the original
precondition of the wakeUp operation:

waiting

To reduce the complexity of this expression we might wish to give a simple name to
the position of the process that is to be woken as follows:



You should be aware that the named let … in value, pos, has a scope that is
restricted to the precondition. This value cannot be referenced in the postcondition. 
If such a value is required in the postcondition another let … in must be used. 
So, for example, the original postcondition of wakeUp

Composite Objects     149

post waiting � waiting † {findPos(waiting, idIn) �mk-Process(idIn, �READY�)}

post let pos � findPos(waiting, idIn)

in waiting � waiting † {pos �mk-Process(idIn, �READY�)}

post let pos � findPos(waiting, idIn)

in let wakeProcess � mk-Process(idIn, �READY�)

in waiting � waiting † {pos � wakeProcess}

would also benefit by using the pos value created in the precondition, but this needs
to be recreated with another let … in clause in the postcondition:

Many let … in clauses may be used in a single expression such as a postcondition.
While this might lengthen the specification it may help to make it more readable.
Here, again, is a reformulated postcondition of the wakeUp operation:

1. Consider a collection of sensors (numbered 1 to 10). Sensors are one of two types,
temperature and pressure. Each sensor, as well as having a number and a type has 
a reading. Initially no readings will be recorded for sensors. Pressure sensors can 
only have positive readings but temperature sensors can have negative and positive
readings.

ii(i) Declare a composite type Sensor, defining any additional types and composite type
invariant you think necessary.

i(ii) Declare a state attribute sensors to be a set of sensors.
(iii) Using set comprehension, initialize this state attribute so that it contains 10 sensors

numbered from 1 to 10, sensors from 1 to 6 are temperature sensors, the others
are pressure sensors. Initially all sensor readings will be set to nil.

2. Amend the DiskScanner specification by imposing a maximum track and sector number
on the disk surface. Assume 80 tracks and 9 sectors.

3. Use let … in clauses to improve the readability of operation specifications in the
ProcessManagement class specification.

EXERCISES

Here two let … in clauses are used, but the final expression becomes much clearer as
a result.
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4. Consider a system to monitor the relationship between the maximum temperature of
a blast furnace during the day, and whether or not an emergency occurred during that
day. Readings are to be taken for a period of 30 consecutive days. Figure 9.7 gives the
UML specification for the Readings class.The Reading type is specified in figure 9.8.

The operations are informally defined as follows:
addReading: takes the maximum temperature for a day, and whether or not there was
an emergency that day and records this information in the system.
wasEmergency: takes a day number and reports on whether or not an emergency
occurred during that day.
getTemperatures: returns a collection of temperatures on all days there was an 
emergency (this collection should allow for repetitions).
numberOfEmegencies: returns the number of emergencies recorded so far.

Specify this class formally in VDM-SL.

Readings

list: Reading [*]

addReading (Real, Boolean)

wasEmergency (Integer): Boolean

getTemperatures( ): Real[*]

numberOfEmergencies( ): Integer

Figure 9.7 UML specification of the Readings class

Reading

temp: Real 

emergency: Boolean

Figure 9.8 UML specification of the Reading type
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Implementing Composite
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10.1 Introduction
In previous chapters we have encountered two of the collection types of VDM-SL (sets
and sequences) and discussed two Java classes (VDMSet and VDMSequence) that we
developed to model these types. We now turn our attention to the implementation of
specifications involving composite objects. Specific composite object types are speci-
fied as and when they are required in VDM specifications. The number and type of
fields associated with these composite types will almost always vary so we cannot 
provide a standard composite object implementation in Java. Instead, you will need 
to define a suitable type for any composite objects you have in your specification. 
We discuss how to go about defining such types in Java and then go on to develop
implementations of specifications involving composite objects.

10.2 Implementing the Time Type
In the previous chapter we introduced you to composite objects by specifying a 
Time type. Here, again is its definition:

Time:: hour: �

minutes: �

seconds: �

inv mk-Time (h, m, s) 	 h � 24 � m � 60 � s � 60

A composite object type in VDM, such as Time, consists of a collection of publicly
accessible fields of data. We can model such a composite object type in Java by devel-
oping a Time class with publicly accessible attributes corresponding to the fields 
of the composite object. Care has to be taken here, however. The composite object
operators, as with all VDM-SL operators, have no side-effects. That is, they do not alter
the original object. This is identical to the concept of an immutable object in Java. 
An immutable object is one whose attributes cannot be modified once initialized. 
As we have made the attributes of this object public, we should also declare them to



be final so that they cannot be modified:
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class Time

{

public final int hour;

public final int minute;

public final int second;

// more code here

}

VDM-SL Java

someTime: Time Time someTime;

public Time(int hourIn, int minuteIn, int secondIn)

{

hour � hourIn;

minute � minuteIn;

second � secondIn;

}

VDM-SL Java

someTime: mk-Time(10, 45, 05) someTime � new Time (10,45,05)

Of course, some composite object types (such as this Time type) can have an invari-
ant associated with them. We can implement this invariant within the Time class just
as we did with invariants in previous classes: by defining an inv method and marking

Now, if a variable is declared to be of type Time in the VDM specification, it can be
declared to be of type Time in the Java code too. For example:

Composite objects are created by passing appropriate values for each object field to
a make function. This corresponds to the idea of a constructor in a class. The order of
the values sent to the make function is the order in which the fields are declared so
we will stick to this in our constructor for the Time class:

Now, when reference is made to a mk-Time function in VDM-SL we can call the
Time constructor. For example:



the class as implementing the InvariantCheck interface. As we said in Chapter 4, 
we have to be careful here, as we are using the int type of Java to model the natural
number type of VDM-SL. Natural numbers must be non-negative so we must add this
requirement into our invariant:

It is important that objects that break the object invariant are not created. As before,
we should monitor for this by checking the invariant within the constructor. So a bet-
ter constructor would be given as follows:

Now, the following attempt at creating an invalid composite Time object would fail
and a VDMException would be thrown:
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class Time implements InvariantCheck

{

// other code here

public boolean inv()

{

// check integers are non-negative and check specified invariant

return hour � � 0 && minute � � 0 && second � � 0

&& hour � 24 && minute � 60 && second � 60;

}

}

public Time(int hourIn, int minuteIn, int secondIn)

{

hour � hourIn;

minute � minuteIn;

second � secondIn;

VDM.invTest(this); // check invariant of this composite object

}

someOtherTime � new Time (32, 45, 10); // invalid hour causes VDMException



The publicly accessible fields of a Time object can be accessed in the same way as
those of a VDM-SL object – by the dot operator:

A mu function is provided in VDM-SL for returning a copy of an object but with 
one or more fields modified. There is no simple way to provide such a method within
a Java class so we will translate the mu function to the appropriate mk function 
(as demonstrated in the previous chapter) and implement this mk function as a call 
to a constructor in Java. For example:

As with all classes, the methods equals and toString are required for this class to
be useful. The complete code listing for the Time class is now given below:
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VDM-SL Java

someTime.hour � 12 someTime.hour � 12

VDM-SL Java

thisTime � thisTime �

� (someTime, minute � 0,second � 0) new Time (someTime.hour,0,0)

The Time class

class Time implements InvariantCheck

{

public final int hour;

public final int minute;

public final int second;

public Time(int hourIn, int minuteIn, int secondIn)

{

hour � hourIn;

minute � minuteIn;

second � secondIn;

VDM.invTest(this);

}

public boolean inv()

{

return hour � � 0 && minute � � 0 && second � � 0

&& hour � 24 && minute � 60 && second � 60;

}



The toString method allows a Time object to be displayed in an output 
statement such as the following:

This would call the toString method of Time and display the following:

mk-Time (12, 30, 22)

The procedure we followed for implementing the composite Time class will be 
the same procedure we follow throughout the rest of this book for implementing any
composite object type. We look now at the implementation of the specifications in the
previous chapter.

10.3 Implementing the DiskScanner Specification
The DiskScanner specification of the previous chapter included the definition of 
a composite Block type:
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// next two methods should be provided with every Java class

public boolean equals(Object objIn)

{

Time timeIn � (Time) objIn;

return hour� �timeIn.hour && minute � �timeIn.minute && second � �timeIn.second;

}

public String toString()

{

return “mk-Time(“� hour �”,”� minute �”,”� second �”)”;

}

}

System.out.println(new Time (12, 30, 22));

Block : : track: �

sector: �



Following the guidelines of the previous section this composite type can be 
implemented as a Block class as follows:
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The Block class

class Block implements InvariantCheck

{

public final int track;

public final int sector;

public Block(int trackIn, int sectorIn)

{

track � trackIn;

sector � sectorIn;

VDM.invTest(this);

}

// need to add invariant as integers are being used to model natural numbers

public boolean inv()

{

return track � � 0 && sector � � 0;

}

public boolean equals(Object objectIn) // redefine equals method

{

Block blockIn � (Block) objectIn;

return (track � � blockIn.track) && (sector � � blockIn.sector);

}

public String toString() // add a toString method

{

return “mk-Block(“� track �”,”� sector �”)”;

}

}

Notice that, although the original VDM specification had no invariant on this type, 
we have had to add an invariant into the Block class. The reason for this is that the 
natural number attributes of VDM-SL have been modelled using integers in Java and
we must ensure that negative integer values are disallowed.



Returning to the DiskScanner specification, the state can be implemented in the
usual way as follows:
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VDM-SL Java

class DiskScanner

state DiskScanner of {

damagedBlocks: Block-set private VDMSet damagedBlocks;

init mk-DiskScanner (dB) 	 dB � { } public DiskScanner()

{

damagedBlocks � new VDMSet();
}

VDM-SL

addBlock (trackIn: �, sectorIn: �)

ext wr damagedBlocks: Block-set

pre mk-Block (trackIn, sectorIn) � damagedBlocks

post damagedBlocks � damaged Blocks � {mk-Block (trackIn, sectorIn)}

Java

public void addBlock(int trackIn, int sectorIn)

{

VDM.preTest(damagedBlocks.doesNotContain (new Block(trackIn, sectorIn)));

damagedBlocks� damagedBlocks.union(new VDMSet (new Block(trackIn, sectorIn)));

VDM.invTest(this);

}

Turning to the operations now, take a look at the translation of addBlock:

Notice how the mk-Block function of VDM-SL is translated into a call to the Block
constructor. The Block constructor checks that the track and sector numbers are
both natural numbers. In the postcondition of the VDM operation, this mk function is



used within a singleton set definition, so the equivalent Java expression places the call
to the Block constructor within the call to the appropriate VDMSet constructor:

We look now at the translation of the getBadSectors operation. Here, once again, is
the VDM specification:

The postcondition here employs set comprehension. This comprehension consists of 
a range, a test and an expression. The range is the set damagedBlocks. So the follow-
ing form of set comprehension is required in the Java method:

Both the action and the test method receive a parameter of type Object. This has
to be type-cast to be of type Block in each case, then the appropriate action and test
can be coded. Here is the translation of the action method:
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VDM-SL Java

....{ mk-Block (trackIn, sectorIn)} ...new VDMSet(new Block(trackIn, sectorIn))

getBadSectors (trackIn: �) list: �-set

ext rd damagedBlocks: Block-set

pre TRUE

post list � {b.sector | b � damagedBlocks ● b.track � trackIn}

VDMSet.setComp( new Expression(){public Object action (Object x) {// some code here}},

damagedBlocks, // range

new Testable(){public boolean test (Object x){// some code here}});

VDM-SL Java

b.sector public Object action (Object x)

{

Block b � (Block)x; // type-cast to Block

return new Integer(b.sector); // return as object

}

Notice that we have to ensure that the item returned is an object, not a primi-
tive type. So, we create an Integer object from the sector number. Here now is the



translation of the test method:

The complete DiskScanner class is now presented below. Examine it closely and
compare it to the original specification.
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VDM-SL Java

b.track � trackIn public boolean test (Object x)

{

Block b � (Block) x;

return b.track � � trackIn;

}

The DiskScanner class

class DiskScanner

{

private VDMSet damagedBlocks; // attribute

public DiskScanner() // initialization

{

damagedBlocks � new VDMSet();

}

// operations

public void addBlock(int trackIn, int sectorIn)

{

VDM.preTest(damagedBlocks.doesNotContain(new Block(trackIn, sectorIn)));

damagedBlocks � damagedBlocks.union(new VDMSet(new Block (trackIn, sectorIn)));

}

public void removeBlock(int trackIn, int sectorIn)

{

VDM.preTest(damagedBlocks.contains(new Block(trackIn, sectorIn)));

damagedBlocks � damagedBlocks.difference(new VDMSet(new Block(trackIn, sectorIn)));

}

public boolean isDamaged(int trackIn, int sectorIn)

{

return damagedBlocks.contains(new Block(trackIn, sectorIn));

}

public VDMSet getBadSectors(final int trackIn)
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{

return VDMSet.setComp(new Expression()

{

public Object action (Object x)

{

Block b � (Block)x;

return new Integer(b.sector);

}

},

damagedBlocks,

new Testable()

{

public boolean test (Object x)

{

Block b � (Block) x;

return b.track � � trackIn;

}

}

);

}

public VDMSet getDamagedBlocks()

{

return damagedBlocks;

}

// additional toString method

public String toString()

{

return “damaged blocks:\t” � damagedBlocks;

}

}

10.4 Implementing the ProcessManagement System
To end this chapter we consider an implementation of the ProcessManagement class.
The implementation of this class allows us to discuss how nil values can be dealt with
in respect to objects. Also, we will look at the issues raised when implementing highly



implicit postconditions and show you how let … in clauses can be incorporated into
Java methods.

10.5 The Data Model
Here is a reminder of the original specification of the data:

The String type is already available in Java. The Status type will be implemented
as a Status class following the guidelines given in Chapter 4:
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types

String � char*

Status � �READY� | �BLOCKED�

Process :: id : String

status : Status

state ProcessManagement of

running : [String]

waiting : Process*

inv mk-ProcessManagement (run, wait) 	
(run � nil � ¬ ∃i�inds wait ● wait(i).id � run)

�

∀ i,j � inds wait ● i � j ⇒ wait(i).id � wait( j).id

init mk-ProcessManagement (run, wait) 	 run � nil � wait � [ ]

end

The Status class

class Status

{

private int value;

public static final Status READY � new Status(0);

public static final Status BLOCKED � new Status (1);

private Status(int x)

{

value � x;

}



The composite Process type will be implemented as the following Process class 
following the guidelines given earlier in this chapter:
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public boolean equals(Object objectIn)

{

Status s � (Status) objectIn;

return value � � s.value;

}

public String toString()

{

switch(value)

{

case 0: return “READY”;

default:return “BLOCKED”;

}

}

}

The Process class

class Process

{

public final String id;

public final Status status;

public Process (String idIn,Status statusIn)

{

id � idIn;

status � statusIn;

}

public boolean equals (Object processIn)

{

Process p � (Process)processIn;
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return p.id.equals(id) && p.status.equals(status);

}

public String toString()

{

return “mk-Process(“� id �”, “� status �”)”;

}

}

Returning to the ProcessManagement class, the attributes are coded in the 
obvious way from the VDM specification:

VDM-SL Java

state ProcessManagement of class ProcessManagementSystem implements InvariantCheck

running : [String] {

waiting : Process* private String running;

private VDMSequence waiting;

// more code here

}

VDM-SL Java

running : [String] private String running;

We will use the null value of Java to represent the nil value of VDM-SL for objects
such as the running attribute. All objects in Java can take the null value without
needing to modify the object type.

The initialization clause contains two conjuncts, the first requiring the running
attribute to be equal to nil, the second requiring the waiting attribute to be equal to

The class is marked as implementing the InvariantCheck interface as we will be
including an invariant method. Notice that the fact that the running attribute was
specified as being of type String or nil, in the Java class we just declare it as being of
type String.
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the empty sequence. This can be satisfied by two assignments:

VDM-SL Java

init mk-ProcessManagement (run, wait) 	 public ProcessManagementSystem()

{

run � nil � wait � [ ] running � null;

waiting � new VDMSequence();

VDM.invTest(this);

}

Notice the invariant test at the end of this constructor as this class contains an invari-
ant method.

Turning to the implementation of the invariant, there are two conjuncts to code in
the Java method. Here is the first:

run � nil � ¬∃i�inds wait ● wait(i).id � run

This disjunction can be coded as a disjunction in Java but we have to be careful about
the ordering of the Java expression. The ordering of the VDM-SL expression is unim-
portant and could have been given as follows:

¬∃i�inds wait ● wait(i).id � run � run � nil

If the running process is equal to nil, however, the first disjunct will be undefined
in Java and may cause program termination during evaluation. For this reason, as we
stated in Chapter 4, we must place the potentially undefined expression second in the
disjunction:

Notice that we use the null value of Java to represent the nil value here, and the 
standard equality (��) operator is used in Java to check for this value, not an 
equals method. The second disjunct is an existential quantifier:

¬∃i�inds wait ● wait(i).id � run

We use the exists method of our VDM class here. This quantifier is quantifying 
over the indices of the waiting sequence. The set of indices will always be a set of
integers so the associated test is a test on an integer value. TestableInt is the

running �� null || // translation of second disjunct here
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appropriate interface to implement here:

VDM-SL Java

¬∃i�inds wait ● !VDM.exists (waiting.inds(), // range

new TestableInt()

wait(i).id � run { public boolean test (int i) // test

{

Process p � (Process) (waiting.index(i));
return p.id.equals(running);

}

} );

The test method takes an index and retrieves the object at that index in the wait-
ing sequence. The index method of VDMSequence returns an item of type Object
so this first needs to be type-cast to a Process object:

The id field of this object can then be examined and compared to the id of the 
running process:

The second conjunction is a two-placed quantifier:

∀ i,j � inds wait ● i � j ⇒ wait(i).id � wait(j).id

We demonstrated in Chapter 8 how two-placed quantifiers can be implemented in
Java as a pair of nested quantifiers. Here is the complete state translation including
this two-placed quantifier:

Process p� (Process)(waiting.index(i)); // type-cast returned item to a Process

return p.id.equals(running);

class ProcessManagementSystem implements InvariantCheck

{

private String running;

private VDMSequence waiting;

public ProcessManagementSystem()

{
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running � null;

waiting � new VDMSequence();

VDM.invTest(this);

}

public boolean inv()

{

return (running � � null || !VDM.exists

(waiting.inds(),

new TestableInt()

{

public boolean test (int i)

{

Process p � (Process)(waiting.index(i));

return p.id.equals(running);

}

}

)

)

&&

// two placed quantifier implemented as a pair of nested quantfiers

VDM.forall

(waiting.inds(),

new TestableInt ()

{

public boolean test (final int i) 
// remember to declare i final

{

return VDM.forall // test contains a second quantifier

(waiting.inds(),

new TestableInt()

{

public boolean test (int j)

{

// type cast two objects

Process first� (Process) (waiting.index(i));

Process second� (Process) (waiting.index(j));
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10.6 The Functions
Before we consider the operations, the ProcessManagement specification included a
number of function definitions. These can also be implemented as methods of the
ProcessManagement class. For example, here is the specification of the remove
function:

// check predicate

return VDM.implies (i!� j,!first.id.equals(second.id));

}

}

);

}

}

);

}

// rest of class here

}

remove(qIn : Process*, posIn : �) qOut : Process*

pre posIn � inds qIn

post qOut � qIn(1,…, posIn-1) � qIn(posIn � 1,…,len qIn)

private VDMSequence remove (VDMSequence qIn, int posIn)

{

VDM.preTest(posIn � � 0 && qIn.inds().contains(posIn));

return qIn.subseq(1, posIn-1).concat(qIn.subseq(posIn�1, qIn.len())) ;

}

VDM functions do not form part of the public interface of the class so they 
should be declared as private methods of the class. Here is the equivalent Java
method:
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Notice how the precondition has to be extended to ensure that the integer received as
parameter is non-negative, as the VDM specification indicates it must be a natural number:

The postcondition is fairly explicit in the sense that an obvious sequence concate-
nation is suggested:

In fact all the postconditions we have met so far have suggested quite obvious imple-
mentations. The postconditions for the remaining two functions, however, are very
implicit and declarative – they succinctly say what is required of the final result with-
out indicating in anyway how to achieve that result. For example, here again is the
specification for the findPos function that returns the index of a process within a
sequence with a given ID:

The header and the precondition are straightforward to translate:

VDM.preTest(posIn � � 0 && qIn.inds().contains(posIn));

return qIn.subseq(1, posIn-1).concat(qIn.subseq(posIn � 1, qIn.len())) ;

findPos(qIn : Process*, idIn : String) pos : �

pre �p � elems qIn ● p.id � idIn

post qIn(pos).id � idIn

private int findPos(VDMSequence qIn, final String idIn)

{

VDM.preTest(VDM.exists(qIn.elems(),

new Testable()

{

public boolean test (Object pIn)

{

Process p � (Process)pIn;

return p.id.equals(idIn);

}

} ));

// implement postcondition here
}
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Notice that the idIn parameter has to be declared final in order to reference it
within the inner class of the precondition test:

private int findPos(VDMSequence qIn, final String idIn)

SET pos to 1

SET found to FALSE

WHILE not found

BEGIN

IF current item meets search criteria

SET found to TRUE

ELSE

increment pos

ENDIF

END

int pos � 1;

boolean found � false;

while (!found)

At the end of this loop the variable pos will be the position of the correct item 
in the list. We will use this algorithm for implementing the findPos postcondition as
follows:

The postcondition specifies the requirement that if the position returned were used
to look up a Process object in the sequence, the ID of that process should match the
ID submitted as a parameter. No clue is given, however, as to how this ID is to be
found.

The implementation of this function will require a search of the given sequence to
find the appropriate process. The precondition ensures that such a process exists. A
common search algorithm employs a boolean flag and a loop to examine each item
in turn until the correct item is found. This algorithm can be expressed in pseudocode
as follows:
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If we were developing our code totally formally we would need to prove that this
design and consequent implementation satisfied the original postcondition. In our
lightweight approach to formal program development we will rely upon run-time
integrity checks to monitor the correctness of the code.

One run-time check that we have shown you is that of consistently checking the 
system invariant. When a postcondition is particularly implicit, as in this case, it may
be worthwhile adding an extra check to ensure that each time the function is called
the postcondition is satisfied. We can do this by adding a postcondition check in much
the same way we added a precondition check. We do this by calling the postTest
method of our VDM class following the implementation of the postcondition:

{

Process p�(Process) (qIn.index(pos)); // type-cast current item to a Process

if (idIn.equals(p.id)) // check ID

{

found � true;

}

else

{

pos��;

}

}

return pos; // return result

private int findPos(VDMSequence qIn, final String idIn)

{

VDM.preTest( /* pre test here */ )

// code to implement postcondition here

VDM.postTest(((Process)qIn.index(pos)).id.equals(idIn)); // check postcondition test

return pos; // return position if postcondition test holds

}

Now, if the software was tested and the findPos method called, the postcondition
test would be evaluated before returning the value of pos. If there was an error in the
implementation the test would fail and a VDMException would be thrown, alerting
us of this mistake. If no mistake were made the method would continue and return the
appropriate value of pos.

Such a test is clearly useful during testing. If, after the testing process was complete,
we were reasonably confident that the final code was correct, we might choose to
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remove this test. Since testing can never guarantee correctness, however, we might
choose to leave in this test to guard against any future failure.

We leave the implementation of the last function (findFirst) as an exercise and
turn now to the implementation of the operations.

10.7 The Operations
Here is the translation of the admit operation, take a look at it and then we will 
discuss it:

VDM-SL

admit( idIn: String)

ext wr waiting: Process*

rd running: [String]

pre (running � nil � idIn � running) � ∀p � elems waiting ● p.id � idIn

post waiting � waiting ^ [mk-Process(idIn, �READY�)]

Java

public void admit(final String idIn)

{

VDM.preTest((running � � null || !idIn.equals(running))&&

(VDM.forall(waiting.elems(),

new Testable()

{

public boolean test (Object pIn)

{

Process p � (Process) pIn;

return !(p.id.equals(idIn));

}

})

)

);

waiting � waiting.concat(new VDMSequence(new Process(idIn, Status.READY)));

VDM.invTest(this);

}

Notice that the parameter, idIn once again needs to be declared as final as it is
accessed within an inner class:

public void admit(final String idIn)
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The precondition and the implementation of the postcondition then follow directly
from the specification. Since this method has write access to the state, an invariant
check is added at the end of the method.

Here is the translation of block operation:

The precondition test follows directly from the specification. Again notice that,
when checking for the null value in Java, the standard comparison operators (! �)
are used not the equals method.

The postcondition consists of two conjuncts that are satisfied by two assignments.
Care has to be taken here. Although the ordering of the conjuncts is unimportant 
in VDM-SL, the ordering of the assignments clearly is. The following would be 
incorrect:

VDM-SL

block( )

ext wr running: [ID]

wr waiting: Process*

pre running � nil

post waiting � waiting ^ [mk-Process(waiting], �BLOCKED�)] � running � nil

Java

public void block()

{

VDM.preTest(running ! � null);

waiting � waiting.concat(new VDMSequence(new Process(running, 

Status.BLOCKED)));

running � null;

VDM.invTest(this);

}

// ordering of assigments important, this would be incorrect

running � null; // resets the value of ‘running’

waiting � waiting.concat(new VDMSequence(new Process(running, Status.BLOCKED)));

The value of an attribute, such as running, should not be reset if its old value is still
required. The old value of running is required when updating the waiting attribute, as
made clear in the post-condition:

waiting � waiting ^ [mk-Process(running, �BLOCKED�)]
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This old value of running will be lost if its old value is overwritten, so the assign-
ment to the waiting attribute needs to be carried out first. Again, this method needs
to check the invariant before completion.

Finally, we consider the wakeUp operation. Here is the specification of the method
that made use of the let … in clause:

When implementing an operation that employs a let … in clause, the local variable
that is implicitly created in the VDM operation can also be created in the associated
Java method. Whereas in VDM the scope of the let … in variable is a given pre- or
postcondition, the scope of such a variable in the Java method can be the whole method.
You can see from the specification above that the variable defined, pos, has the same
value in both the pre- and postcondition, so we will create one variable and make ref-
erence to it in both the preTest and the implementation of the postcondition. The
type of this variable is not declared in the VDM specification but can be determined as
being of type �. We can create an equivalent variable in our Java method:

This variable is now used in the remainder of the method:

The implementation of the remaining operations of this ProcessManagement
class we leave as an exercise.

wakeUp (idIn: String)

ext wr waiting: Process*

pre let pos � findPos (waiting, idIn)

in waiting (pos) . status � �BLOCKED�

post let pos � findPos (waiting, idIn)

in waiting � waiting (pos) † mk-Process(idIn, �READY�)

public void wakeUp (String idIn)

{

int pos � findPos(waiting, idIn); // create local variable;

// rest of method here

}

VDM.preTest(((Process)waiting.index(pos)).status.equals(Status.BLOCKED));

waiting � waiting.override(pos,new Process(idIn, Status.READY));
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1. Why did the implementation of the Block class in section 10.2 include an invariant,
when no invariant was associated with the composite Block type in the VDM specifica-
tion?

2. In exercise 1 of the last chapter you considered the specification of a composite Sensor
type. Implement this as a class in Java, then write a tester program to initialize and 
display a set of sensors as described in the same question.

3. Implement the DiskScanner class, including the amendments you considered to this
class in exercise 2 of the last chapter.

4. Test the DiskScanner class by developing an appropriate tester program.
5. In exercise 3 of the last chapter, you rewrote the operation specifications of the
ProcessManagement class by making use of let … in clauses. Rewrite the Process
Management class to incorporate these changes.

6. Test the ProcessManagement class by developing an appropriate tester program.
7. Implement the Readings class you specified in exercise 4 of the previous chapter.
8. Test the Readings class by developing an appropriate tester program.

EXERCISES
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11.1 Introduction
Computing systems often involve relating two types of value together. In Chapter 3
you were introduced to the idea of a function; you saw that a function is a set of
assignments from one set to another. A map is closely related to the concept of func-
tions. A map is a special sort of set, one which contains a set of maplets. Each maplet
connects an element of one set to an element of another set; the first set is referred to
as the domain, the second is referred to as the range.

11.2 Notation
Consider Table 11.1, which shows the state of a number of different temperature sen-
sors that monitor the condition of various items in a laboratory. The condition of each
item can be either LOW, NORMAL or HIGH.

We can express the Table 11.1 as a map, which we might call sensors. This will be a
mapping from a set of sensors to the set of possible conditions. We do this as follows.

sensors � {A � �LOW�, B � �NORMAL�, C � �NORMAL�, D � �HIGH�, 
E � �NORMAL�, F � �NORMAL�}

You can see that a map is defined by listing the maplets within a pair of curly brack-
ets; the association is represented by the special arrow, �.

In general terms, a particular map, m, might be specified as follows:

m � {a � y, b � x, c � x, d � z}

Table 11.1 A look-up
table for a set of sensors

Sensor Condition

A LOW

B NORMAL

C NORMAL

D HIGH

E NORMAL

F NORMAL



Two important points should be noted here:

● By definition, all the domain elements in a map are unique.
● The ordering of the maplets is not significant – the map m above could be specified,

without changing the meaning, as:

m � {d � z, a � y, c � x, b � x}

You should also note that the empty map is written as: {�}.

11.3 Map Operators
In order to illustrate the use of the various map operators that exist, we will define the
following three maps, all of which map from some previously defined set (the mem-
bers of which are represented here by lower case letters) to the set of natural numbers.

m1 � {a � 1, b � 2, c � 2, d � 3, e � 4}
m2 � {a � 2, f � 1, c � 7}
m3 � { f � 2, g � 6}

The domain operator, dom, returns the set of all the domain elements of the
maplets. The range operator, rng, returns the set of all the range elements.

dom m1 � {a, b, c, d, e}
rng m1 � {1, 2, 3, 4 }

dom m2 � {a, f, c}
rng m2 � {1, 2, 7}

The union operator, �, behaves in a similar way as it does with sets. So

m1 � m3 � {a � 1, b � 2, c � 2, d � 3, e � 4, f � 2, g � 6}

The union operator is defined only if no two domain elements are the same; if this is
not the case, then union is undefined (otherwise we would lose the uniqueness of the
keys). Thus the following two expressions are undefined:

m1 � m2
m2 � m3

In the case where two or more domain elements are the same in both maps, we can
use the override operator (†). This behaves in the same way as the union operator,
but if the domain element of a maplet is the same in both sets, then the second maplet
wins. Thus

m1 † m2 � {a � 2, b � 2, c � 7, d � 3, e � 4, f � 1}
m3 † m2 � { f � 1, g � 6, a � 2, c � 7}
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A domain restriction operator, �, is defined with two operands (parameters). The
first is a set and the second is a map. The result yields a map that contains only those
maplets whose domain element is in the set. For example

{a, c, e} � m1 � {a � 1, c � 2, e � 4}
{e, f} � m2 � {f � 1}
{} � m3 � {�}

The domain deletion operator, , behaves in a similar way, but in this case deletes
the maplet in question:

{a, c, e} m1 � {b � 2, d � 3}
{e, f} m2 � {a � 2, c � 7}
{} m3 � { f � 2, g � 6}

The range restriction operator, �, and the range deletion operator, , are similar
to the above, but apply to the last elements of the maplets. Thus

m1 � {1, 2} � {a � 1, b � 2, c � 2}
m3 {6, 2} � {�}

11.4 Map Application
Applying a map is the same as applying a function, and we use the same notation.
Thus if we apply our map to a particular domain element, then the result is the range
element. For example, once again using the above maps:

m1(d) � 3
m2( f ) � 1
m3( f ) � 2
m3(x) is undefined

Using the sensors example from section 11.2:

sensors(A) � �LOW�

11.5 Using the Map Type in VDM-SL
To declare a variable to be of type Map we use a special arrow . For example,
to declare a variable m that maps characters to natural numbers we would write:

m : Char �

11.6 Specifying a High-Security Building
The first example we will specify is a system that controls entry and exit to a high-
security building. We start with the requirements definition.
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11.6.1 REQUIREMENTS DEFINITION
Only authorized employees are allowed entry to the building and each one consists of
a user name (which is unique) and a password, both of which must be supplied when
the individual wishes to enter the building. If the details are correct, a signal is sent to
the hardware instructing it to open the door, and the member of staff is recorded as
being inside the building.

When the member of staff wishes to leave the building, the individual supplies his
or her user name, and as long as the user is recorded as being currently inside the
building, a signal is sent to the hardware to open the door, and the employee is
recorded as having left.

The UML diagram for the system is shown in Figure 11.1.
You can see that we have identified two attributes. The first we have specified to be

a collection of Employees. The second will be a collection of names – the names of
those employees currently inside the building.

Two user-defined types are identified in Figure 11.1, Employee and Signal. They
both need to be analysed further. An employee consists of name–password pair. The
UML specification of an Employee type is given in Figure 11.2.

As will be seen in a moment, there are two possible signal values, either OPEN_DOOR or
ACTIVATE_ALARM. An appropriate enumerated type can be specified in UML (Figure 11.3).

Four operations have been identified, and these are described below:

addEmployee
Accepts a name and password, and adds this pair to the collection of authorized 
personnel.
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SecuritySys

authorized: Employee[*]

inside: String[*]

addEmployee(String, String)

removeEmployee(String)

enter(String, String): Signal

leave(String): Signal

Figure 11.1 The UML diagram for the security system

Employee

name: String

password: String

Figure 11.2 The UML specification of the Employee type



removeEmployee
Removes a specified employee from the list of authorized employees, providing that
that person is not currently inside the building.
enter
Accepts a name and password. If these details match an entry in the authorized list,
then a signal is sent to the hardware, telling it open the door, and the entry of the indi-
vidual is recorded. If the details are incorrect the signal sent instructs the hardware to
set off an alarm.
leave
Accepts a name of an employee and if this individual is currently inside the building,
then a signal is sent to the hardware telling it to open the door, and the departure of
the individual is recorded. If the employee is not inside the building, the signal sent
instructs the hardware to set off an alarm.

11.6.2 THE VDM-SL SPECIFICATION
We begin with the types clause. A String and Signal type can be specified in the obvi-
ous way:
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<<enumeration>>
Signal

OPEN_DOOR

ACTIVATE_ALARM

Figure 11.3 The UML specification of the Signal type

types

String � Char*
Signal � �OPEN_DOOR�|�ACTIVATE_ALARM�

The UML analysis also suggested an Employee type. Figure 11.2 identified that such
a type would need to consist of a name and password pair. A composite type could be
declared here, and the collection of employees modelled as a set. But we note from the
analysis that the names of employees are to be unique. Rather than use a set and
impose this restriction on the model as an invariant, we can use a map from names to
passwords. Such a map would guarantee the uniqueness of names and so avoid the
need to capture this in an invariant. A map would also simplify the final model by
removing the need for a composite type.

Figure 11.2 indicates that both name and password are strings so the following map
would be appropriate:

authorized : String String



We now define the state as follows – it consists of a collection of employees
(name–password mappings), representing the authorized employees, and a set of
names of those employees currently inside the building. A set of names is appropriate
as ordering and repetition are not significant here:

The invariant records the constraint that the set of employees that are inside the
building comprise only those people who are authorized.

Initially, the collection of authorized staff and the set of staff inside the building will
both be empty:

Now we come to the operations.
The addEmployee operation is straightforward. Notice how in the precondition we

have to use the dom operator to check that the name is not in the domain of the
employee map. Notice also the use of the union operator in the postcondition to add
the name–password pair into the map.

removeEmployee is also straightforward – notice the use of the domain deletion
operator in the postcondition. Notice also how the precondition checks not only that
the employee is an authorized member of staff, but also that he or she is not currently
in the building.

180 Formal Software Development

state SecuritySys of
authorized : String String
inside : String-set

inv mk-SecuritySys(a,i) 	 i � dom a

init mk-SecuritySys(a,i) 	 a � {�} � i � {}

removeEmployee(nameIn : String)
ext wr authorized : String String

rd inside : String-set
pre nameIn � dom authorized � nameIn � inside

post authorized � {nameIn} authorized

addEmployee(nameIn : String, passwordIn : String)
ext wr authorized : String String
pre nameIn � dom authorized

post authorized � authorized � {nameIn � passwordIn}



The enter operation not only records the fact that a person is entering the building,
but also signals the hardware to open the door – as long as the name and password are
correct, and the individual is not already recorded as being inside the building. In the
event that either of these two conditions is not met, then the state remains unchanged
and the signal that is output sets off the alarm.

In the leave operation, an alarm is raised if the employee wishing to leave is not 
currently recorded as being inside the building:

11.7 A Robot Monitoring System
Our second example in this chapter will model a software system that monitors a
number of robots working at a space station. The requirements of the software are
described informally below.

11.7.1 THE REQUIREMENTS OF THE ROBOT MONITORING SOFTWARE
Each robot will have a unique name and a mode, which can be WORKING, IDLE or BROKEN.
There are two sectors, A and B, in which a robot can be set to work. The following
operations are required:

● addRobot: accepts the name of a new robot and records the fact that this robot has
been added to the collection. Its mode is set to idle and it is therefore not allocated
a sector to work in.

● removeRobot: accepts the name of a robot and records the removal of this robot
from the system.
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enter(nameIn : String, passwordIn : String) signal : Signal

ext rd authorized : String String
wr inside : String-set

pre TRUE

post (authorized(nameIn) � passwordIn � nameIn � inside)
� (inside � inside � {nameIn} � signal � �OPEN_DOOR�)

� (authorized(nameIn) ≠ passwordIn � nameIn � inside)

� (inside � inside � signal � �ACTIVATE_ALARM�)

leave(nameIn : String) signal : Signal
ext wr inside : String-set
pre TRUE

post nameIn � inside � inside � inside\{nameIn} � signal � �OPEN_DOOR�

� nameIn � inside � inside � inside � signal � �ACTIVATE_ALARM�



● setToWork: accepts the name of a robot, that must currently be idle, and records
the fact that it has been set to work in a given sector.

● finishWork: accepts the name of a robot, and records the fact that this robot has
been removed from the sector and that its mode has been set to idle.

● needsRepair: as above but records its mode as broken.
● fixed: accepts the name of a broken robot and records that that its mode has been

set to idle.
● inSector: accepts a given sector and returns the names of those robots in that sector.
● numberToRepair: returns the number of broken robots.

Figure 11.4 shows the UML specification of the robot monitor software.
Two types in this UML specification need further analysis: Sector and Robot. A robot

can be in one of two sectors, A or B. An enumerated Sector type can be defined in UML
for this purpose (Figure 11.5).

Turning to the Robot type, each robot will have a unique name, be in a particular
mode and be associated with a particular sector. Figure 11.6 provides a UML specifi-
cation for this type.

Figure 11.6 introduces yet another new type: Mode. A robot’s mode will either be
WORKING, IDLE or BROKEN. Once again, an enumerated type can be specified in UML
(Figure 11.7). Now, we turn to the formal specification.
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RobotMonitor

robots: Robot[*]

addRobot (String)

removeRobot (String)

setToWork (String, Sector)

finishWork (String)

needsRepair (String)

fixed(String)

inSector (Sector): String [*]

numberToRepair (): Integer

Figure 11.4 The UML specification of the RobotMonitor class

<<enumeration>>
Sector

A

B

Figure 11.5 The UML specification of the Sector type



11.7.2 THE FORMAL SPECIFICATION OF THE ROBOT MONITORING SOFTWARE
First, the types definition needs to consider the types identified in the analysis stage.
The String, Mode and Sector types are specified as follows:

Now consider the Robot type of Figure 11.6. The type suggests a composite type is
required in the VDM specification. Looking ahead to the state specification, a collec-
tion of robots is required in the RobotMonitor system. A map will be useful here with
the robot name (specified to be a String) acting as the domain element. This will deal
with the uniqueness of names as identified in the analysis stage.

We could map this robot name onto a composite object consisting of the remaining
fields of a robot (mode and sector). However, we believe that in a case like this it is
more natural and more useful to map to a ‘whole’ object such as a robot, rather than
to split it up and create an ‘artificial’ composite object consisting just of the sector and
mode fields. This gives us:

robots: String Robot
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Robot

name: String

mode: Mode

sector: Sector

Figure 11.6 The UML specification of the Robot type

<<enumeration>>
Mode

WORKING

IDLE

BROKEN

Figure 11.7 The UML specification of the Mode type

types
String � Char*
Mode � �WORKING�|�IDLE�|�BROKEN�
Sector � �A�|�B�



As you will see in the state definition, this does mean that we need to specify an
invariant to ensure that each name in the domain is the same as the name field of the
object with which it is associated. Returning to the types definition, we now add a
composite Robot type, with fields corresponding to the fields identified in Figure 11.6:

Important details about this Robot type, that are not made obvious in the informal
UML specification, are captured in the formal specification. First, the sector type can
be a sector value or it could be nil (indicating a robot is allocated to no sector). Second,
a constraint on a robot type is recorded in an invariant. The constraint indicates that
the mode cannot be nil if the robot is recorded as being in WORKING mode. Our state
definition is now given as follows:

As we mentioned above, the state invariant records the fact that the names of robots
in the domain must be the same as the corresponding names in the range. In the next
section we present the complete specification, with the complete set of operations.
The operations are reasonably straightforward, and comments have been added for
extra clarity.

11.8 The Complete Specification of the 
Robot Monitoring Software
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Robot :: name: String
mode: Mode
sector: [Sector]

inv mk-Robot(-, m, s) 	 m � WORKING ⇔ s � nil

state RobotMonitor of

robots: String Robot

inv mk-RobotMonitor(r) 	 ∀ n � dom r ● n � r(n).name
init mk-RobotMonitor(r) 	 r � {�}
end

types

String � Char*

Mode � �WORKING�|�IDLE�|�BROKEN�

Sector � �A�|�B�

Robot :: name: String

mode: Mode

sector: [Sector]
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– – the type invariant ensures that a working robot is allocated to one of
– – the two sectors

inv mk-Robot(-, m, s) 	 m � WORKING ⇔ s � nil

state RobotMonitor of

robots : String Robot

– – the state invariant ensures that each name in the domain is equal to the 
– – corresponding name field in the object to which it maps

inv mk-RobotMonitor(r) 	 ∀ n � dom r ● n � r(n).name

init mk-RobotMonitor(r) 	 r � {�}

end

operations

addRobot (nameIn: String)

ext wr robots: String Robot

pre nameIn � dom robots

post robots � robots � {nameIn � mk-Robot (nameIn, �IDLE�, nil)}

removeRobot (nameIn: String)

ext wr robots: String Robot

– – the second part of the precondition ensures that we are not removing a

– – working robot

pre nameIn � dom robots � robots(nameIn).mode � �WORKING�

post robots � {nameIn } robots

setToWork (nameIn: String, sectorIn Sector)

ext wr robots: String Robot

– – the second part of the precondition ensures that the robot is currently idle

pre nameIn � dom robots � robots(nameIn).mode � �IDLE�

post robots � robots † { nameIn � mk-Robot(nameIn, �WORKING�, sectorIn ) }
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finishWork (nameIn: String)

ext wr robots: String Robot

pre nameIn � dom robots � robots(nameIn).mode � �WORKING�

– – note the use of the map override operator here – the second part of the maplet is
– – overridden with the a robot object containing the new details
post robots � † {nameIn � mk-Robot(nameIn, �IDLE�, nil)}

needsRepair (nameIn: String)
ext wr robots: String Robot

pre nameIn � dom robots

post robots � † {nameIn � mk-Robot(nameIn, �BROKEN�, nil)}

fixed (nameIn: String)
ext wr robots: String Robot

pre nameIn � dom robots � robots(nameIn).mode � �BROKEN�

– – we have used a �-function here to change the value of one of the fields in the
– – robot object. A make function could have been used as an alternative, as above.
post robots � † {nameIn � �( (nameIn), mode � �IDLE�)}

inSector (sectorIn Sector) result : String-set

ext rd robots : String Robot

pre TRUE

– – note the use of set comprehension to construct the correct set
post result � {r.name | r � rng robots ● r.sector � sectorIn}

numberToRepair() number : �
ext rd robots : String Robot

pre TRUE

post number � card {r | r � rng robots ● r.mode � �BROKEN�}

robotsrobots

robots

robots
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1. Given the following maps:

m1 � {a � x, b � y, c � x} m2 � {b � y, c � y, d � y}

write down the value of:
(a) m1 (a)
(b) m2 (x)
(c) dom m1
(d) rng m2
(e) m1 † m2
(f) m2 † m1
(g) m1 � m2
(h) {a, d} � m1
(i) {b, c} m2
(j) m1 � {x}
(k) m2 {y}

2. Study the scenario below, and answer the questions that follow.

‘A space station allows certain authorized craft to take up orbit around it in order to
undertake repairs or to transfer staff to and from the station. Each shuttle is identified
by a unique identity number, and will carry staff who are also uniquely identified by a
security number.

When a craft wishes to take up orbit, it announces its identity number together with
a list of all staff on board. Permission will be granted only if the identity number of the
craft is amongst those authorized, and all the staff on board are also authorized.

The system must be capable of recording a list of authorized craft and authorized
staff, as well as recording each orbiting craft together with the staff on board’.

(a) Specify the state of the system in VDM-SL, including an invariant and an initializa-
tion clause.

(b) Based on your state specification, write specifications for the following operations:

addAuthorizedCraft: accepts an identity number of a craft and records the fact that
this craft has been added to the list of authorized crafts.
addAuthorizedStaff: accepts an identity number of a member of staff and records
the fact that this individual has been added to the list of authorized staff.
allowOrbit: accepts an identity number of a craft and a list of staff security numbers
on board the craft, and, as long as the craft and all the staff are authorized, records
the addition of this craft to the list of orbiting craft.
checkCraft: accepts an identity number of a craft and checks whether that craft is 
currently in orbit around the station.
removeCraftAuthority: accepts an identity number of a craft, and records the
removal of that craft from the list of authorized craft; a craft should not be removed if
it is currently in orbit.
removeStaffAuthority: accepts an identity number of a member of staff, and records
the removal of that member of staff from the list of authorized staff; an individual
should not be removed if he or she is currently aboard an orbiting craft.
listOrbitingCraft: outputs a list of identity numbers of all craft currently in orbit
around the station.
listStaff: accepts an identity number of an orbiting craft, and outputs a list of the staff
on that craft.

EXERCISES





CHAPTER 12
Implementing Maps
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12.1 Introduction
In previous chapters we described how the VDMSet class and a VDMSequence class
can be used to implement VDM specifications. In this chapter we do the same thing
with a VDMMap class. This time we make use of the Hashtable class available in 
the java.util library, and we start with a brief description of the methods of 
that class. We then go on to describe the VDMMap class, and use it to implement the
RobotMonitor software from the last chapter.

The VDMMap class can be downloaded from the website.

12.2 The Hashtable Class
As we did with the Vector class we will briefly describe the Hashtable class. In
fact, this class is effectively the concrete representation of a map. A hash table con-
tains pairs of objects, closely corresponding to a maplet. The first object, which in
VDM-SL we would refer to as the domain element, is referred to as the key in Java. The
second object – the range element – is referred to as the value. As with a map, the keys
are unique, thus enabling a value to be looked up by submitting a key. Table 12.1
explains some of the commonly used Hashtable methods.

It must be pointed out that any object that is used as the key in a hashtable has 
to have a special method, hashCode (inherited from the Object class), overridden.

Table 12.1 Some Hashtable methods

Method Description

Hashtable() Creates a new empty hash table.

Object put(Object,Object) Adds the given key and value pair to the hash table. This method
returns the previous value of the specified key in this hash table, or
null if it did not have one.

Object get(Object) Returns the value associated with the given key. Returns null if this
key is not in the hash table.

Object remove(Object) Removes the given key (if it exists) and its corresponding value from
this hash table. Like the put method, this method returns the
previous value of the specified key in this hash table, or null if it
did not have one.

boolean containsKey Returns true if the specified object is a key in this hash table, and
(Object) false otherwise.



The hashCodemethod is used in conjunction with the equalsmethod when search-
ing for a key that matches a particular object. For the two objects to be deemed iden-
tical then in addition to the equals method returning true, the hashCode method
of the two objects must return the same integer. Objects of classes such as String,
Integer, Double and Char will already have had the hashCode method over-
written, so you don’t have to worry about this issue in such cases. But if you are using
an object of a class that you have written yourself, then you must overwrite the
hashCode method of that class. You will see an example of this in Chapter 14.

12.3 The VDMMap Class
As we have indicated, the class contains a single attribute, a Hashtable,which holds
the elements of the map:
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import java.util.*;

class VDMMap

{

private Hashtable theMap;

// methods go here

}

VDM-SL Java

someMap : Type A TypeB VDMMap someMap;

12.3.1 THE MAPLET CLASS
As you are aware from the last chapter, a map in VDM consists of a set of maplets. 
In order to facilitate the implementation of maps in Java we have therefore defined 
a Maplet class which has two attributes, representing the domain element and the
range element:

class Maplet

{

private Object domainElement;

private Object rangeElement;

// methods go here

}

Thus, if a map had been declared in a VDM specification, it can be declared as an
object of the VDMMap class in Java. For example:



Constructors have been provided for this class that allow the creation of a maplet
from any combination of the primitive types (int, char and double) and objects. The
class also has methods getDomainElement and getRangeElement which allow
read access to the two components of the class.

12.3.2 THE CONSTRUCTORS OF THE VDMMAP CLASS
As with sets and sequences, a number of constructors have been provided to cons-
truct an empty map, a singleton map and to construct maps explicitly. They are 
summarized in Table 12.2.

Table 12.3 provides examples of how these constructors are used – you will see how
useful the Maplet class is here, as any overloading of methods has already been taken
care of in this class.

12.3.3 THE MAP OPERATORS
Just as we did with the VDMSet and VDMSequence classes, we have provided 
methods for all the map operators within the VDMMap class. These are summarized in
Table 12.4.

Table 12.5 provides examples of the use of these operators.
As with the VDMSet and VDMSequence classes, additional methods have been 

provided in order to simplify the process of testing and implementation. These are
shown in Table 12.6.
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Table 12.2 VDMMap constructors

Constructor Description

VDMMap() Empty map constructor.

VDMMap(Maplet[]) Explicit map constructor – creates a new map from an array of maplets
passed as a parameter.

VDMMap(Maplet) Singleton map constructor – creates a new map containing the single
maplet passed in as a parameter.

Table 12.3 VDMMap constructors – examples

VDM-SL example Java example

Empty map constructor
someMap � {�} someMap � new VDMMap();

Explicit map constructors
someMap � {‘a’ � 2, VDMMap someMap � new VDMMap(new Maplet[]

‘b’ � 5} {new Maplet(‘a’, 2), new Maplet(‘b’, 5)});

Singleton map constructors
someMap � {‘x’ � 6.7} VDMMap someMap � new VDMMap(new Maplet(‘x’, 6.7));
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Table 12.4 VDMMap operators

Method Description

VDMSet dom() Returns a VDMSet that is the domain of the map.

VDMSet rng() Returns a VDMSet that is the range of the map.

VDMMap override(VDMMap mapIn) Accepts a VDMMap and returns an identical
VDMMap to the original map, but with its elements
overridden as prescribed by the override operator.

VDMMap union(VDMMap mapIn) Accepts a VDMMap and returns a VDMMap
constructed by taking the union of the original map
and the new map; throws a VDMException if the
two maps contain any of the same domain
elements.

VDMMap domRestrict(VDMSet setIn) Accepts a VDMSet and returns a VDMMap
identical to the original map, but containing only
those maplets whose domain elements are
contained within the set.

VDMMap domDelete(VDMSet setIn) Accepts a VDMSet and returns a VDMMap
identical to the original map, but containing all but
those maplets whose domain elements are contained
within the set.

VDMMap rangeRestrict(VDMSet setIn) Accepts a VDMSet and returns a VDMMap
identical to the original map, but containing only
those maplets whose range elements are contained
within the set.

VDMMap rangeDelete(VDMSet setIn) Accepts a VDMSet and returns a VDMMap
identical to the original map, but containing all but
those maplets whose range elements are contained
within the set.

Object applyTo Accepts an Object representing the domain
(Object domainElementIn) element and returns the associated range element;

throws a VDMException if the domain element
does not actually exist within the map.

Table 12.5 VDMMap operators – examples

VDM-SL Java

dom someMap someMap.dom();

rng someMap someMap.rng();

someMap † {1 � 2} someMap.override(new Maplet(1, 2));

someMap � {‘a’ � 3} someMap.union(new Maplet(‘a’, 3));

{1, 2, 3} � someMap someMap.domRestrict(new VDMSet(new int[] {1,2,3}));

{‘a’, ‘b’} someMap someMap.domDelete(new VDMSet(new char[] {‘a’,’b’}));

someMap � {2} someMap.rangeRestrict(new VDMSet(2));

someMap {“BLUE”} someMap.rangeDelete(new VDMSet(“BLUE”));

someMap(x) someMap.applyTo(x);



12.4 Implementing the RobotMonitor Software
The final example that we looked at in Chapter 11 was the specification for software
that monitors a number of working robots. Take a look at this specification again to
refresh your memory.

In this section we will implement that specification. You will see from the types
clause that a Robot is specified as a composite object consisting of name, a mode and
a sector. The first of these was specified as a String, the other two as quote types. It
will therefore be necessary to define classes for these quote types (as we explained in
Chapter 4), and then to define a Robot class to represent our composite object.

So first of all we define a Mode and a Sector class as follows:
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Table 12.6 Additional VDMMap operators

VDMMap method Description

boolean equals(Object) Accepts an Object as a parameter and
returns true if this object is identical to the
original map, otherwise returns false.

String toString() Returns a string representation of the map.

boolean isEmpty() Returns true if the map is empty,
otherwise returns false.

The Mode class

class Mode

{

private int value;

public final static Mode WORKING � new Mode(0);

public final static Mode IDLE � new Mode(1);

public final static Mode BROKEN � new Mode(2);

private Mode(int x)

{

value � x;

}

public boolean equals(Object modeIn)

{

Mode m � (Mode) modeIn; // type cast

return m.value �� value;

}
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public String toString()

{

switch(value)

{

case 0 : return “WORKING”;

case 1 : return “IDLE”;

default : return “BROKEN”;

}

}

}

The Sector class

class Sector

{

private int value;

public final static Sector A � new Sector(0);

public final static Sector B � new Sector(1);

public Sector(int x)

{

value � x;

}

public boolean equals(Object sectorIn)

{

Sector s � (Sector) sectorIn; // type cast

return s ! � null && s.value �� value;

}

public String toString()

{

switch(value)

{

case 0 : return “A”;

default : return “B”;

}

}

}



Take a look at the equals method – notice that we have an additional conjunct in
the return statement, to test if the sector is null. We need to make this check,
because our specification of a robot allows for the possibility of the Sector field being
nil. This will be implemented in Java using the null value, and it is important that
we do not try to access an attribute of such a value as is done in the second conjunct,
as this would raise an exception. You will recall that fortunately Java does not proceed
with the test of the second conjunct once the first one has evaluated to false.

Now we are in a position to define our Robot class.
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The Robot class

class Robot implements InvariantCheck

{

public final String name;

public final Mode mode;

public final Sector sector;

public Robot(String nameIn, Mode modeIn, Sector sectorIn)

{

name � nameIn;

mode � modeIn;

sector � sectorIn;

VDM.invTest(this);

}

public boolean inv()

{

return (mode �� Mode.WORKING) �� (sector �� null);

}

public boolean equals(Object robotIn)

{

Robot robot � (Robot) robotIn;

return name.equals(robot.name)

&& mode.equals(robot.mode)

&& (sector �� null && robot.sector �� null)

|| (sector !� null && sector.equals(robot.sector));

}
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The last conjunct of the equals method needs some explanation. Once again we
have the possibility that the sector of any robot could be equal to null, and once
again we must avoid calling a method of a null object. Inspection of this conjunct
will show that we have taken account of any situation where a sector could be null
before allowing the equals method to be invoked.

Now we can define the RobotMonitor class. We present the code below, and as
usual you should study it carefully before moving on to the next section where we
provide an explanation of some of the more complex aspects of the class.

public String toString()

{

return “mk-Robot(“� name �”,”� mode �”,”� sector � “)”;

}

}

The RobotMonitor class

class RobotMonitor implements InvariantCheck

{

// state attributes

private VDMMap robots;

// initialize the state

public RobotMonitor()

{

robots � new VDMMap();

VDM.invTest(this);

}

//invariant test

public boolean inv()

{

return VDM.forall(robots.dom(), // the set whose elements are to be tested

new Testable() // the test

{

public boolean test(Object nameIn)

{
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String n � (String) nameIn;

Robot robot � (Robot) robots.applyTo(n);

return n.equals(robot.name);

}

} );

}

// operations

public void addRobot(String nameIn)

{

VDM.preTest(robots.dom().doesNotContain(nameIn));

robots

� robots.union(new VDMMap(new Maplet(nameIn, new Robot(nameIn, Mode.IDLE, null))));

VDM.invTest(this);

}

public void removeRobot(String nameIn)

{

Robot rob � (Robot) robots.applyTo(nameIn);

VDM.preTest(robots.dom().contains(nameIn) && !rob.mode.equals(Mode.WORKING));

robots � robots.domDelete(new VDMSet(nameIn)); 

VDM.invTest(this);

}

public void setToWork(String nameIn, Sector sectorIn)

{

Robot rob � (Robot) robots.applyTo(nameIn);

VDM.preTest(robots.dom().contains(nameIn)

&& rob.mode.equals(Mode.IDLE));

robots � robots.overwrite

(new VDMMap(new Maplet(nameIn, new Robot(nameIn, Mode.WORKING, sectorIn))));

VDM.invTest(this);

}

public void finishWork(String nameIn)

{

Robot rob � (Robot) robots.applyTo(nameIn);

VDM.preTest(robots.dom().contains(nameIn) && rob.mode.equals(Mode.WORKING));
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robots

� robots.overwrite(new VDMMap(new Maplet(nameIn, new Robot(nameIn, Mode.IDLE, null))));

VDM.invTest(this);

}

public void needsRepair(String nameIn)

{

VDM.preTest(robots.dom().contains(nameIn));

robots

� robots.overwrite(new VDMMap(new Maplet(nameIn, new Robot(nameIn, Mode.BROKEN, null))));

VDM.invTest(this);

}

public void fixed(String nameIn)

{

Robot rob � (Robot) robots.applyTo(nameIn);

VDM.preTest(robots.dom().contains(nameIn)

&& rob.mode.equals(Mode.BROKEN));

robots � robots.overwrite

(new VDMMap(new Maplet(nameIn, new Robot(nameIn, Mode.IDLE, rob.sector))));

VDM.invTest(this);

}

public VDMSet inSector(final Sector sectorIn)

{

return VDMSet.setComp(new Expression() // the expression

{

public Object action(Object elementIn)

{

Robot rob � (Robot) elementIn;

return rob.name;

}

},

robots.rng(), // the set from which the elements are drawn

new Testable() // the test

{

public boolean test(Object elementIn)
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{

Robot rob � (Robot) elementIn;

return sectorIn.equals(rob.sector);

}

}  );

}

public int numberToRepair()

{

VDMSet set � VDMSet.setComp(robots.rng(), // the set from which the elements are drawn

new Testable() // the test

{

public boolean test(final Object elementIn)

{

Robot rob � (Robot) elementIn;

return rob.mode.equals(Mode.BROKEN);

}

} );

return set.card();

}

public String toString()

{

return robots.toString() � ‘\n’;

}

}

12.5 Analysis of the RobotMonitor Class
You are familiar with all of the techniques used in the above implementation, so we
simply draw your attention to some of the more complex methods.

First, take a look at the invariant:

public boolean inv()

{

return VDM.forall(robots.dom(), new Testable()

{

public boolean test(final Object nameIn)
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As a reminder, here is the original specification from which this was derived:

inv mk-RobotMonitor(r) 	; ∀ n � dom r ● n � r(n).name

inSector (sectorIn: Sector) result : String-set

ext rd robots : String Robot

pre TRUE

post result � {r.name | r � rng robots ● r.sector � sectorIn}

public VDMSet inSector(final Sector sectorIn)

{

return VDMSet.setComp(new Expression() // the expression

{

public Object action(final Object elementIn)

Once again we see the use of the forall method of the VDM class. The set whose
values are being tested is the domain of the robot map – implemented as
robots.dom(), the first parameter to the forallmethod. The second parameter is
the test, which requires that the domain element of the map (the name) is the same
as the name component of the range element (a whole robot). You can see how this
has been implemented by means of an object of the Testable class in which the test
method is defined. Notice the need to type cast (the test method receives an
Object, not a Robot) and notice the use of the applyTomethod to obtain the range
element associated with the name.

The other interesting methods are the ones that involve set comprehension. 
Let’s remind ourselves of the specification for one of these, namely inSector:

{

String n � (String) nameIn;

Robot robot � (Robot) robots.applyTo(n);

return n.equals(robot.name);

}

} );

}

Now look at the way this has been implemented:



You will recall that the set comprehension method of VDMSet has been overloaded
to allow for a number of different possibilities. The version used here involves the use
of three parameters – an Expression object, a VDMSet and a Testable object. The
expression picks out the name field of the robot (r.name) by defining the action
method of an anonymous class. The required set is the range of the set of robots
(implemented as robots.rng()). Finally the Testable object ensures that the
name used as the key is the same as the name field of the associated robot with 
the line:
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{

Robot rob � (Robot) elementIn;

return rob.name;

}

},

robots.rng(), // the set from which the elements are drawn

new Testable() // the test

{

public boolean test(final Object elementIn)

{

Robot rob � (Robot) elementIn;

return sectorIn.equals(rob.sector);

}

} );

}

return sectorIn.equals(rob.sector);

There is something here that we have to be very careful about. You will recall from
the specification that it is possible that the sector field of a robot could be equal to nil.
As we have seen, this is implemented in Java by using the null value. If the sector itself
were null, then calling its equals method would cause an exception to be thrown.
Thus we could not have implemented the above method as:

return rob.sector.equals(rob.sectorIn);
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The other method that uses set comprehension is numberToRepair. Here is its 
specification again:

numberToRepair() number : �

ext rd robots : String Robot

pre TRUE

post number � card {r | r � rng robots ● r.mode � BROKEN}

This time, however, we need only two parameters as there is no need for an
Expression object. Thus the method is implemented as:

public int numberToRepair()

{

VDMSet set � VDMSet.setComp(robots.rng(), // the set from which the elements are drawn

new Testable() // the test

{

public boolean test(final Object elementIn)

{

Robot rob � (Robot) elementIn;

return rob.mode.equals(Mode.BROKEN);

}

} );

return set.card();

}

Notice that this time it is the cardinality of the set that is required, hence the use of
the card method in the last line.

This completes our discussion of the RobotMonitor class – once again you will
have the opportunity to test this class in the exercises at the end of this chapter.

We have now completed our coverage of VDM-SL, and the way in which we can
implement VDM specifications in Java. Our final two chapters deal with a case study
in which you will see the specification and implementation of a more complex 
software system that make use of many of the concepts that we have dealt with in 
this text.
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1. In exercise 1 of the previous chapter you were given two maps to consider:

m1 � {a � x, b � y, c � x} m2 � {b � y, c � y, d � y}

Write a tester program to implement these maps and evaluate all the expressions from
the same question.

2. Write a program that tests out the RobotMonitor class. As with previous examples,
you might wish to use menu-driven program such as the following:

As with previous examples, each menu option can test a method of the
RobotMonitor class – again, the ‘Show all’ option can simply make use of the
toString method of RobotMonitor.

3. Implement the specification of the High Security Building software developed in 
the previous chapter.

4. Test the HighSecurityBuilding class by developing an appropriate tester program.
5. Implement the Space Station software that you specified in exercise 2 of the last 

chapter.
6. Test the SpaceStation class by developing an appropriate tester program.

EXERCISES

Robot Tester
1. Add a robot
2. Remove a robot
3. Set to work
4. Finish work
5. Needs repair
6. Fixed
7. In sector
8. Number to repair
9. Show all





CHAPTER 13
Case Study Part 1:
Specification
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13.1 Introduction
In this chapter and the next, we bring together all the concepts covered in previous
chapters to specify formally and to implement a piece of software that records and
monitors customer account transactions. Such software is clearly business critical, and
is ideally suited for formal development. We begin by describing the requirements.

13.2 The Requirements Definition
The software is required to record account details and transactions for a number of
account holders. A transaction will either involve a deposit or a withdrawal of money
from an account. As well as having a unique account number, each account holder 
will have recorded for them their history of transactions, their personal details, their
current money balance and an overdraft limit. The software is expected to be able to
do the following:

● Create a new account.
● Remove an existing account.
● Record a deposit transaction.
● Record a withdrawal transaction.
● Update the personal details of a customer’s account.
● Change the overdraft limit associated with an account.
● Produce a statement of transactions associated with an account.
● Display the balance of an account.
● Display the personal details of an account.

From these requirements a list of operations and attributes needs to be identified and
recorded in the specification stage. First the informal specification.

13.3 The Informal Specification
We will call the software required to monitor and record account transactions 
the AccountSys class. A single attribute is required for the AccountSys class, a collec-
tion of account records. The operations of the AccountSys class should allow the 
user requirements identified in the earlier section to be met. The methods we have
identified are listed in the UML specification of the AccountSys class presented in
Figure 13.1. They should be fairly self-explanatory from their names and interfaces.



Several user-defined types are identified in Figure 13.1. The internal details of the
AccNum type and the Details type play no role in the specification and so do not need
to be analysed further at this stage. There is no requirement for the transactions to be
kept in date order, nor are there any operations that require the value of a date to be
interrogated. For these reasons we can also abstract away from the details of a date
and need not analyse it any further. The internal details of the Account and
Transaction types are important here, however, so do require further analysis.

An account record needs to consist of an account number, some customer details, 
a balance, an agreed overdraft limit and a history of transactions. Figure 13.2 gives
the UML specification for this Account type.
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AccountSys

accounts: Account [*]

addAccount (AccNum, Details, Real)

removeAccount (AccNum)

deposit(AccNum, Date, Real)

withdraw(AccNum, Date, Real)

changeDetails(AccNum, Details)

changeLimit(AccNum, Real)

getAllTransactions(AccNum): Transaction [*]

getBalance(AccNum): Real

getAccount(AccNum): Account

getDetails(AccNum): Details

getLimit(AccNum): Real

getAllAccounts(): Account [*]

contains(AccNum): Boolean

isEmpty(): Boolean

getTotal(): Integer

Figure 13.1 The UML specification of the AccountSys class

Account

number: AccNum

details: Details

balance: Real

limit: Real

transactions: Transaction [*]

Figure 13.2 The UML specification of the Account type



When a transaction takes place the date of the transaction should be recorded, 
the type of transaction (withdrawal or deposit) and the amount of the transaction.
Figure 13.3 gives the UML specification for the Transaction type.

Figure 13.3 introduces yet another type, TransactionType. This is an enumerated
type that can either have a value of WITHDRAWAL or DEPOSIT (see Figure 13.4).

Now that the informal specification is complete, we turn to the formal specification
of the AccountSys class.

13.4 The Formal Specification
As always, before the operation specifications, we consider the state specification.

13.4.1 THE ACCOUNTSYS STATE SPECIFICATION
It was noted earlier that the types AccNum, Date and Details do not require further
analysis. We will record this formally by declaring them to be TOKEN types:
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Transaction

date: Date

type: TransactionType

amount: Real

Figure 13.3 The UML specification of the Transaction type

<<enumeration>>
TransactionType

WITHDRAWAL

DEPOSIT

Figure 13.4 The UML specification of the TransactionType type

types

AccNum � TOKEN

Date � TOKEN

Details � TOKEN



The TransactionType type was analysed to be an enumerated type. We record this as
the following union of two quote types in VDM-SL:
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TransactionType � � WITHDRAWAL �|� DEPOSIT �

Transaction :: date : Date

amount : �

transactionType : TransactionType

inv mk-Transaction(-,a,-) 	 a � 0

Account :: number : AccNum

details : Details

balance : �

limit : �

transactions : Transaction*

Again, a data type invariant can be considered here. There are three restrictions we
need to place on Account objects:

● The overdraft limit is always non-negative.
● Any negative balance should not exceed the overdraft limit.
● The balance of an account should be consistent with the transactions that have

taken place.

Now the Account type. One of the fields is specified in the UML diagram of 
Figure 13.2 to be a collection of transactions. A sequence is the appropriate VDM-SL
type to use here as two or more identical transactions may need to be recorded, and it
will be useful to preserve the ordering of transactions for later inspection:

The field names and types follow directly from the UML diagram of Figure 13.3.
Specifying this type formally allows us to consider a data type invariant. A transaction
amount must always be greater than zero. The following data type invariant is 
therefore defined:

Both the types Transaction and Account can be specified as composite objects in
VDM-SL. First Transaction:



To simplify this data type invariant, we will assume the existence of a balanceOf
function (which we will formally specify later) that returns the balance implied by a
sequence of transactions:

That completes the specification of the user-defined types. Now we consider the
state attributes. The UML diagram in Figure 13.1 makes clear that there is only one
attribute, a collection of accounts:

accounts : Account [*]

Ordering of accounts is not important here, and each account is unique due to the
unique account numbers. We could use a set to model this collection but, as account
numbers are unique, account look-up and modification will be made easier if a map is
used, with account numbers being used as domain elements:
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inv mk-Account(-,-,b,l,t) 	 l 
 0 � b 
 �l � balanceOf(t) � b

state AccountSys of

accounts : AccNum Account

inv mk-AccountSys(a) 	 ∀ num � dom a ● num � a(num).number

init mk-AccountSys(a) 	 a � {�}

13.4.2 AUXILIARY FUNCTIONS
A balanceOf function is required that receives a sequence of transactions and returns
the balance implied by the history of deposits and withdrawals. One way to specify
this function would be to specify two sequences, one consisting of all the deposited
amounts, the other all the withdrawal amounts. The sum of the withdrawal amounts
can then be subtracted from the sum of the deposit amounts. Here is a specification
that assumes the existence of a suitable sum function (which we specify later):

balanceOf(transIn : Transactions*) total : �
pre TRUE

post let dep � [transIn(i).amount | i � inds transIn ● transIn(i).transactionType � �DEPOSIT�]
in let withd � [transIn(i).amount | i � inds transIn ● transIn(i).transactionType � �WITHDRAWAL�]

in total � sum(dep) - sum(withd)

A state invariant is needed to ensure that account numbers in the domain match the
corresponding account numbers of account records in the range:

Finally, we note that initially the record of accounts should be empty:



Here a let … in clause has been employed to define a sequence, dep, through
sequence comprehension. The comprehension filters the original sequence for deposit
amounts. Another let … in clause is used to define a sequence, withd, which filters the
original sequence for withdrawal amounts. A further auxiliary function, sum, is then
called to calculate the respective balances of these two sequences in order to arrive at
a final balance. We can give a very concise explicit specification of this function with
the use of recursion as follows:

210 Formal Software Development

sum : �* → �

sum(seqIn) 	 if seqIn � [ ]

then 0

else hd seqIn � sum(tl seqIn)

You can see that this recursion stops when the sequence sent to the function is
empty. If the sequence is non-empty the sum of the sequence is equal to the value of
the hd of the sequence plus the sum of the remaining elements (the tl of the
sequence). Constantly calling the sum function with the tl of the parameter will even-
tually result in an empty sequence being sent to the function and the recursion will
terminate.

13.4.3 OPERATION SPECIFICATIONS
We begin by looking at the addAccount operation. Here, as a quick reminder, is the
UML interface:

addAccount (AccNum, Details, Real)

An account record should be created with the customer’s account number, details
and overdraft limit. Here is the operation specification:

addAccount(numberIn : AccNum, detailsIn : Details, limitIn : �)

ext wr accounts : AccNum Account

pre numberIn � dom accounts � limitIn 
 0

post accounts � accounts � {numberIn � mk-Account(numberIn, detailsIn, 0, limitIn, []}

An account record consists of the three parameters to this operation as well as a 
balance and a history of transactions. The postcondition makes clear that a new 
customer should have a zero balance and no transaction history. As you can see, the
account number is used as the domain element for the given composite account
object. The precondition records the restriction that the account number should not
be one currently in use. The precondition also records the fact that the overdraft limit
on an account should be non-negative (as noted in the Account invariant).



The removeAccount operation needs to remove the account record with the given
account number. Since we have used a map to model this collection of account
records, the map deletion operator succinctly captures the requirements of this 
operation:
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removeAccount(numberIn : AccNum)

ext wr accounts : AccNum Account

pre numberIn � dom accounts

post accounts � {numberIn} accounts

deposit(numberIn : AccNum, dateIn : Date, amountIn : �)

ext wr accounts : AccNum Account

pre numberIn � dom accounts � amountIn � 0

post let bal �(accounts (numberIn)).balance

in let trans � (accounts (numberIn)).transactions

in let newTrans � mk-Transaction(dateIn, amountIn,� DEPOSIT�)

in accounts � accounts † {numberIn � �(accounts (numberIn),

balance � bal � amountIn,

transactions � trans^[newTrans])}

The precondition records the requirement that the account number should be one
currently recorded, and the amount being deposited should be greater than zero.

The postcondition makes use of several let … in clauses. The first gives a name, bal,
to the balance of the old account record:

let bal � ( (numberIn)).balance

The second let … in gives a name, trans, for the transaction history of the old
account record:

let trans � ( (numberIn)).transactionsaccounts

accounts

The precondition records the requirement that the given account number should
originally be amongst the collection of recorded account numbers.

The deposit operation takes the account number of the account in which to deposit
money, the date of the deposit and the amount to deposit and updates the appropri-
ate account record accordingly. Here is the operation specification:



The final let … in clause gives a name, newTrans, for the new transaction consist-
ing of the given date and amount, plus the appropriate transaction type – DEPOSIT:

let newTrans � mk-Transaction(dateIn, amountIn,� DEPOSIT�)

These three values are then used in the final expression:
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withdraw(numberIn : AccNum, dateIn : Date, amountIn : �)

ext wr accounts : AccNum Account

pre numberIn � dom accounts � amountIn � 0

� (accounts(numberIn)).balance-amountIn 
 - (accounts(numberIn)).limit

post let bal � (accounts (numberIn)).balance

in let trans � (accounts (numberIn)).transactions

in let newTrans � mk-Transaction(dateIn, amountIn,� WITHDRAWAL�)

in accounts � accounts † 

{numberIn � �(accounts(numberIn), balance � bal - amountIn, 

transactions � trans ^ [newTrans])}

(accounts(numberIn)).balance-amountIn 
- (accounts(numberIn)).limit

accounts � accounts † {numberIn � �(accounts (numberIn),

balance � bal � amountIn, 

transactions � trans ^ [newTrans])}

Notice the additional restriction on the precondition, that the overdraft limit is not
exceeded by the amount of the requested withdrawal:

A mu function is used to indicate that the new account record is identical to the old
account record but with a few fields (balance and transactions) modified.

The withdraw operation is similar to the deposit operation except the amount is
reduced from the account rather than added.



The changeDetails operation should change a single field of the account record.
That field is the details field:
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changeLimit(numberIn : AccNum, limitIn : �)

ext wr accounts : AccNum Account

pre numberIn � dom accounts � limitIn 
 0 � accounts(numberIn).balance 
 - limitIn

post accounts � accounts † {numberIn � �(accounts (numberIn), limit � limitIn)}

getDetails(numberIn : AccNum) detailsOut : Details

ext rd accounts : AccNum Account

pre numberIn � dom accounts

post detailsOut � (accounts(numberIn)).details

getBalance(numberIn : AccNum) balanceOut : �

ext rd accounts : AccNum Account

pre numberIn � dom accounts

post balanceOut � (accounts(numberIn)).balance

The changeLimit operation also changes a single field of the account record. That
field is the limit field. Care needs to be taken here though. The overdraft limit should
not be changed if the given customer is already beyond the new proposed limit. The
precondition can record this restriction:

Notice that the precondition also records the familiar restriction of a valid account
number being required and the fact that the new limit must always be non-negative.

The operations getDetails, getBalance, getLimit and getAllTransactions all return an
appropriate field from the given customer’s account record:

changeDetails(numberIn : AccNum, detailsIn : Details)

ext wr accounts : AccNum Account

pre numberIn � dom accounts

post accounts � accounts † {numberIn � �(accounts (numberIn), details � detailsIn)}



Two query operations are required: contains, which reports on whether or not 
a given account number is amongst the recorded account numbers, and isEmpty,
which reports on whether or not the account collection is empty:
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contains(numberIn : AccNum) query : �

ext rd accounts : AccNum Account

pre TRUE

post query ⇔ numberIn � dom accounts

isEmpty() query : �

ext rd accounts : AccNum Account

pre TRUE

post query ⇔ accounts � { � }

getTotal() totalOut : �

ext rd accounts : AccNum Account

pre TRUE

post totalOut � card dom accounts

getLimit(numberIn : AccNum) limitOut : �

ext rd accounts : AccNum Account

pre numberIn � dom accounts

post limitOut � (accounts(numberIn)).limit

getAllTransactions(numberIn : AccNum) transactionsOut : Transaction*

ext rd accounts : AccNum Account

pre numberIn � dom accounts

post transactionsOut � (accounts(numberIn)).transactions

Finally, the getTotal operation returns the number of account holders currently
recorded:



The complete formal specification of the AccountSys class is now presented below:
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types

AccNum � TOKEN

Date � TOKEN

Details � TOKEN

TransactionType � � WITHDRAWAL �|� DEPOSIT�

Transaction :: date : Date

amount : �

transactionType : TransactionType

inv mk-Transaction(-,a,-) 	 a � 0

Account :: number : AccNum

details : Details

balance : �

limit : �

transactions : Transaction*

inv mk-Account(-,-,b,l,t) 	 l 
 0 � b 
- l � balanceOf(t) � b

state AccountSys of

accounts : AccNum Account

inv mk-AccountSys(a) 	 ∀ num � dom a ● num � a(num).number

init mk-AccountSys(a) 	 a � { � }

end AccountSys

functions

balanceOf(transIn : Transactions*) total : �

pre TRUE
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post let dep � [transIn(i).amount | i � inds transIn ● transIn(i).transactionType � �DEPOSIT�]

in let withd � [transIn(i).amount | i � inds transIn ●

transIn(i).transactionType � �WITHDRAWAL�]

in total � sum(dep) – sum(withd)

sum : �* → �

sum(seqIn) 	 if seqIn � [ ]

then 0

else hd seqIn � sum(tl seqIn)

operations

addAccount(numberIn : AccNum, detailsIn : Details, limitIn : �)

ext wr accounts : AccNum Account

pre numberIn � dom accounts � limitIn 
 0

post accounts � accounts � {numberIn � mk-Account(numberIn, detailsIn, 0, limitIn, []}

removeAccount(numberIn : AccNum)

ext wr accounts : AccNum Account

pre numberIn � dom accounts

post accounts � {numberIn} accounts

deposit(numberIn : AccNum, dateIn : Date, amountIn : �)

ext wr accounts : AccNum Account

pre numberIn � dom accounts � amountIn � 0

post let bal � (accounts (numberIn)).balance

in let trans � (accounts (numberIn)).transactions

in let newTrans � mk-Transaction(dateIn, amountIn,� DEPOSIT�)

in accounts � accounts † {numberIn � �(accounts(numberIn),

balance � bal � amountIn,

transactions � trans ^ [newTrans])}
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withdraw(numberIn : AccNum, dateIn : Date, amountIn : �)

ext wr accounts : AccNum Account

pre numberIn � dom accounts � amountIn � 0

� (accounts(numberIn)).balance - amountIn 
- (accounts(numberIn)).limit

post let bal � (accounts (numberIn)).balance

in let trans � accounts (numberIn)).transactions

in let newTrans � mk-Transaction(dateIn, amountIn,� WITHDRAWAL�)

in accounts � accounts †

{numberIn � �(accounts (numberIn), balance � bal-amountIn,

transactions � trans ^ [newTrans])}

changeDetails(numberIn : AccNum, detailsIn : Details)

ext wr accounts : AccNum Account

pre numberIn � dom accounts

post accounts � accounts † {numberIn � �(accounts(numberIn), details � detailsIn)}

changeLimit(numberIn : AccNum, limitIn : �)

ext wr accounts : AccNum Account

pre numberIn � dom accounts � limitIn 
 0 � accounts(numberIn). balance 
 - limitIn

post accounts � accounts † {numberIn � �(accounts(numberIn), limit � limitIn)}

getDetails(numberIn : AccNum) detailsOut : Details

ext rd accounts : AccNum Account

pre numberIn � dom accounts

post detailsOut � (accounts(numberIn)).details

getBalance(numberIn : AccNum) balanceOut : �

ext rd accounts : AccNum Account

pre numberIn � dom accounts

post balanceOut � (accounts(numberIn)).balance
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getLimit(numberIn : AccNum) limitOut : �

ext rd accounts : AccNum Account

pre numberIn � dom accounts

post limitOut � (accounts(numberIn)).limit

getAllTransactions(numberIn : AccNum) transactionsOut : Transaction*

ext rd accounts : AccNum Account

pre numberIn � dom accounts

post transactionsOut � (accounts(numberIn)).transactions

contains(numberIn : AccNum) query : �

ext rd accounts : AccNum Account

pre TRUE

post query ⇔ numberIn � dom accounts

isEmpty() query : �

ext rd accounts : AccNum Account

pre TRUE

post query ⇔ accounts � { � }

getTotal() totalOut : �

ext rd accounts : AccNum Account

pre TRUE

post totalOut � card dom accounts

1. The formal specification of operations deposit and withdrawal are very similar. Simplify
them by specifying an auxiliary function, updateTransactions, which accepts a sequence
of transactions, the account number associated with the transaction, the date of the
transaction, the amount of the transaction and the transaction type (deposit or 

EXERCISES
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withdrawal). The function should return a new sequence of transactions, identical to 
the sequence sent to the function but with the given transaction recorded for the given
customer.

2. Specify an additional operation, getLastTransactions, which accepts an integer, n, and an
account number, accIn, and returns the last n transactions for account number accIn.

3. The current specification puts no limit on the number of transactions that can be kept
for each customer. In reality, there would probably be a fixed limit to this number. If this
were to be the case, the specification would have to be modified to allow deletions to
take place – adjustments would then need to be made to maintain the integrity of the
total balance.

Make any modifications necessary to the VDM specification to limit the number of 
transactions recorded for a customer to, say, 100.
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14.1 Introduction
In this final chapter we implement the AccountSys class that we specified in Chapter 13.
We then create an application that uses this class. We have designed this as a simple
graphical interface with a basic file-handling system that reads and writes the records
to permanent storage. The work covered in this chapter illustrates clearly how formal
development improves the operational and testing phases of the development process
by greatly increasing the prospect of producing correct code first time round, and then
by easily trapping errors and consequently reducing the overall time spent on testing
a system.

14.2 Developing the AccountSys Class
Inspection of the AccountSys specification indicates that three items, AccNum, Details
and Date, have been declared as TOKEN types. When we first introduced the idea of 
a TOKEN we explained that this meant that the detail could be left until implementa-
tion time. Until now we have simply implemented this type by extending the ‘bare
bones’ VDMToken class that we provided. Now that we are developing what could be
a real system, however, we need to consider what is required by this application. First
we consider the AccNum type, which represents the account number. In practice, most
financial institutions would require that the account numbers conform to a 
particular format. Here we will impose the restriction that the account number must
consist of a string containing precisely eight characters. This is achieved by providing
an invariant on the type. Thus we can specify AccNum by making an enhancement to
the original VDM-SL specification as follows:

……….
values
LENGTH : � � 8
……….

types
String � Char*
AccNum :: value : String
inv mk-AccNum(v) 	 len v � LENGTH
………



In the implementation, as well as overriding the equals method and the
toString method, in this case we must also override the hashCode method, as we
told you in Chapter 12; this is because objects of AccNumwill be used as keys in a hash
table (as defined by the VDMMap class). A hashCodemethod needs to return an iden-
tical value for two identical objects – in this example, this can be achieved simply by
returning the value generated by the predefined hashCode method of the single
String attribute. This leads to the following implementation of the AccNum class.
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The AccNum class

// implementation of a token type

class AccNum implements InvariantCheck

{

// the account number must be a string of exactly eight characters

private final int LENGTH � 8;

private String value;

public AccNum(String valueIn)

{

value � valueIn;

VDM.invTest(this);

}

public boolean inv()

{

return value.length() �� LENGTH;

}

public boolean equals(Object accNumIn)

{

AccNum num � (AccNum) accNumIn;

return value.equals(num.value);

}

public String toString()

{

return value;

}

/* objects of this class will be used as keys in a hashtable; it is there-

fore necessary to override the hashCode method of Object */

public int hashCode()

{

return value.hashCode();

}

}

Next we consider the Details type. In practice, an account-holder’s details would
normally consist of such items as the name, address, telephone, number, date of birth
and so on. Here, for, simplicity, we will simply consider two fields, name and address.



The specification would therefore require a final enhancement as follows:
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……….

types
……….
Details :: name : String

address : String
………

The Details class

// implementation of a token type

class Details

{

// the details will comprise a name and an address

public String name;

public String address;

public Details (String nameIn, String addressIn)

{

name � nameIn;

address � addressIn;

}

public boolean equals(Object detailsIn)

{

Details details � (Details) detailsIn;

return name.equals(details.name) && address.equals(details.address);

}

public String toString()

{

return name � ‘\n’ � address;

}

}

This gives rise to the following class definition:

The other type that has been specified as a TOKEN is the Date type. We will implement
this by making use of the Java Date class that is part of the java.util package.

Now that we have implementations for our TOKEN types, we can turn our attention
to the quote types that need to be implemented. Here the TransactionType is a union
of quote types. The two possible values in this case are �DEPOSIT� and 
�WITHDRAWAL�; we have seen how to implement a union of quote types before. 
The code for TransactionType is as shown below.



Having implemented the token types and the quote types, we can now consider the
composite objects, the first of which is Transaction. There is nothing new in this class,
and the implementation below requires no further explanation.
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The TransactionType class

// implementation of a quote type

class TransactionType

{

private int value;

public final static TransactionType DEPOSIT � new TransactionType(0);

public final static TransactionType WITHDRAWAL � new TransactionType(1);

private TransactionType(int x)

{

value � x;

}

public boolean equals(Object typeIn)

{

TransactionType t � (TransactionType) typeIn; // type cast

return t.value �� value;

}

public String toString()

{

switch(value)

{

case 0 : return “DEPOSIT”;

default : return “WITHDRAWAL”;

}

}

}

The Transaction class

// implementation of composite object

import java.util.*; // for the Date class

class Transaction implements InvariantCheck

{

public final Date date;

public final double amount;

public final TransactionType transactionType;

public Transaction(Date dateIn, double amountIn, TransactionType typeIn)

{

date � dateIn;

amount � amountIn;

transactionType � typeIn;



The other composite object that we must implement is Account. Its implementation
appears below:
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VDM.invTest(this);

}

public boolean inv()

{

return amount � 0;

}

public boolean equals(Object transactionIn)

{

Transaction transaction � (Transaction) transactionIn;

return date.equals(transaction.date)

&& amount �� transaction.amount

&& transactionType.equals(transaction.transactionType);

}

public String toString()

{

return “mk-Transaction(“ � date � “,” � amount � “,” � transactionType � “)”;

}

}

The Account class

// implementation of composite object

class Account implements InvariantCheck

{

public AccNum number;

public Details details;

public double balance;

public double limit;

public VDMSequence transactions;

public boolean inv()

{

return limit �� 0 && balance �� -limit && balanceOf(transactions) �� balance;

}

public Account(AccNum numberIn, Details detailsIn,

double balanceIn, double limitIn, VDMSequence transIn)

{

number � numberIn;

details � detailsIn;

balance � balanceIn;

limit � limitIn;

transactions � transIn;

VDMinvTat(this);

}



226 Formal Software Development

// implemention of the functions

private double sum(VDMSequence seqIn)

{

double total � 0;

for(int i � 1; i �� seqIn.len(); i��)

{

Double seq � (Double) seqIn.index(i);

total � total � seq.doubleValue();

}

return total;

}

private double balanceOf(final VDMSequence transIn)

{

final VDMSequence dep,withd;

// sequence comprehension

dep � VDMSequence.sequenceComp(

new ExpressionInt() // the expression

{

public Object action(int i)

{

return transIn.index(i);

}

},

transIn.inds(), // the set

new TestableInt()

{

public boolean test(int i) // the test

{

Transaction trans � (Transaction) transIn.index(i);

return trans.transactionType.equals(TransactionType.DEPOSIT);

}

});

// sequence comprehension

withd � VDMSequence.sequenceComp(

new ExpressionInt()// the expression

{

public Object action(int i)

{

return transIn.index(i);

}

},

transIn.inds(), // the set

new TestableInt()

{

public boolean test(int i) // the test

{

Transaction trans � (Transaction) transIn.index(i);



Here, some explanation is required, mainly in regard to the implementation of the
functions sum and balanceOf. Because these functions are required only by the
Transaction class we have implemented them as part of this class. In Chapter 13
the sum function was specified explicitly as follows:
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return trans.transactionType.equals(TransactionType.WITHDRAWAL);

}

});

return sum(dep) – sum(withd);

}

public boolean equals(Object accountIn)

{

Account account � (Account) accountIn;

return number.equals(account.number)

&& details.equals(account.details)

&& balance �� account.balance

&& limit �� account.limit

&& transactions.equals(account.transactions);

}

public String toString()

{

return “mk-Account(“� number �”,”

� details �”,”

� balance �”,”

� limit �”,”

� transactions �”)”;

}

}

sum : �* → �

sum(seqIn) 	 if seqIn � [ ]
then 0
else hd seqIn � sum(tl seqIn)

Although we might sometimes specify a function recursively, we should avoid this
technique when it comes to implementation, since it is very easy for a recursive func-
tion to lead to stack overflow with possibly disastrous results – not what we want for
a supposedly critical system!

Inspection of the Accounts class reveals that we have implemented the sum function
by means of a for loop, which iterates through the sequence. If we were developing
the implementation completely formally, we would have to offer a formal proof that
showed that this particular implementation meets the specification. However, since
we are taking a ‘VDM-lite’ approach here, we will instead argue this rigourously.



Bearing in mind the axiomatic nature of the assignment statement, we can assert that
because the total was initialized to zero, and because each iteration of the loop 
comprises an assignment statement that adds the next item to the total, then when the
loop terminates, the total will be equal to the sum of all items in the sequence.

The sum function is in turn used by the balanceOf function. Here again is its 
specification:
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balanceOf(transit : Transactions*) total : �
pre TRUE

post let dep � [transIn(i).amount | i � inds transIn ● transIn(i).transactionType � �DEPOSIT�]
in let withd � [transIn(i).amount | i � inds transIn ● transIn(i).transactionType � �WITHDRAWAL�]

in total � sum(dep) – sum(withd)

The AccountSys class

import java.util.*; // for the Date class

class AccountSys implements InvariantCheck
{

// the state
private VDMMap accounts;
public AccountSys()
{

accounts � new VDMMap();
VDM.invTest(this); // ensure that the initialization process preserves the invariant

}
// the state invariant
public boolean inv()
{

return VDM.forall(accounts.dom(), // the set over which the forall statment is bound
new Testable()
{

public boolean test(Object objectIn) // the test
{

AccNum num � (AccNum) objectIn;
Account acc � (Account) accounts.applyTo(num);
return num.equals(acc.number);

}
});

}
// the operation
public void addAccount(AccNum numberIn, Details detailsIn, double limitIn)
{

// ensure that the precondition is met
VDM.preTest(accounts.dom().doesNotContain(numberIn) && limitIn �� 0);
Account acc � new Account(numberIn, detailsIn, 0, limitIn, new VDMSequence());

This function is implemented by making use of the sequenceComp method of the
VDM class. You have come across this before and it does not therefore require further
explanation.

At last we are in a position to implement the AccountSys class itself. Interestingly
this is now a fairly straightforward business as we simply make use of the techniques
that we have used in previous chapters. The comments included in the code below
should provide all the necessary explanation.
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accounts � accounts.union(new VDMMap(new Maplet(numberIn, acc)));
VDM.invTest(this); // ensure that the invariant is preserved

}
public void removeAccount(AccNum numberIn)
{

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn));
accounts � accounts.domDelete(new VDMSet(numberIn));
VDM.invTest(this); // ensure that the invariant is preserved

}
public void deposit(AccNum numberIn, Date dateIn, double amountIn)
{

Account acc � (Account) accounts.applyTo(numberIn);
double bal � acc.balance;

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn) && amountIn � 0);
VDMSequence trans � acc.transactions;
Transaction newTrans � new Transaction(dateIn, amountIn, TransactionType.DEPOSIT);

Account newAcc � new Account(numberIn, acc.details, bal � amountIn, acc.limit,
acc.transactions.concat(new VDMSequence(newTrans)));

accounts � accounts.override(new VDMMap(new Maplet(numberIn, newAcc)));
VDM.invTest(this); // ensure that the invariant is preserved

}
public Account getAccount(AccNum numberIn)
{

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn));
return (Account) accounts.applyTo(numberIn);

}
public void withdraw(AccNum numberIn, Date dateIn, double amountIn)
{

Account acc � (Account) accounts.applyTo(numberIn);
double bal � acc.balance;
double lim � acc.limit;

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn)

&& amountIn � 0
&& bal – amountIn �� -lim);

VDMSequence trans � acc.transactions;
Transaction newTrans � new Transaction(dateIn, amountIn, TransactionType.WITHDRAWAL);

Account newAcc � new Account(numberIn, acc.details, bal – amountIn, acc.limit,
acc.transactions.concat(new VDMSequence(newTrans)));

accounts � accounts.override(new VDMMap(new Maplet(numberIn, newAcc)));
VDM.invTest(this); // ensure that the invariant is preserved

}
public void changeDetails(AccNum numberIn, Details detailsIn)
{

double bal � ((Account) accounts.applyTo(numberIn)).balance;
double lim � ((Account) accounts.applyTo(numberIn)).limit;
VDMSequence trans � ((Account) accounts.applyTo(numberIn)).transactions;

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn));

// the �-function is implemeneted by calling the constructor
Account newAcc � new Account(numberIn, detailsIn, bal, lim, trans);
accounts � accounts.override(new VDMMap(new Maplet(numberIn, newAcc)));
VDM.invTest(this); // ensure that the invariant is preserved

}
public void changeLimit(AccNum numberIn, double limitIn)
{

double bal � ((Account) accounts.applyTo(numberIn)).balance;
Details det � ((Account) accounts.applyTo(numberIn)).details;



14.3 Using the AccountSys Class in an Application
Having developed the AccountSys class we are in a position to use it in an application.
Here we have developed a graphical application as shown in Figure 14.1.

This has been achieved by implementing a class that we have called Bank, which
extends the JPanel class of the Java Swing package. A Bank object can then be added

230 Formal Software Development

VDMSequence trans � ((Account) accounts.applyTo(numberIn)).transactions;
// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn) && limitIn �� 0 && bal �� -limitIn);
// the �-function is implemeneted by calling the constructor
Account newAcc � new Account(numberIn, det, bal, limitIn, trans);
accounts � accounts.override(new VDMMap(new Maplet(numberIn, newAcc)));
VDM.invTest(this); // ensure that the invariant is preserved

}

public Details getDetails(AccNum numberIn)
{

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn));
return ((Account) accounts.applyTo(numberIn)).details;

}

public double getBalance(AccNum numberIn)
{

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn));
return ((Account) accounts.applyTo(numberIn)).balance;

}
public double getLimit(AccNum numberIn)
{

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn));
return ((Account) accounts.applyTo(numberIn)).limit;

}
public VDMMap getAllAccounts()
{

return accounts;
}

public VDMSequence getAllTransactions(AccNum numberIn)
{

// ensure that the precondition is met
VDM.preTest(accounts.dom().contains(numberIn));
return ((Account)accounts.applyTo(numberIn)).transactions;

}

public boolean contains(AccNum numberIn)
{

return accounts.dom().contains(numberIn);
}

public boolean isEmpty()
{

return accounts.isEmpty();
}
public int getTotal()
{

return accounts.dom().card();
}

}



to a JFrame in a short program such as the one below:
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The BankApplication class

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import javax.swing.*;

public class BankApplication

{

public static void main(String[] args)

{

JFrame frame � new JFrame();

frame.setDefaultCloseOperation(1);

frame.setTitle(“Accounts System”);

Bank bank � new Bank();

frame.setBackground(Color.lightGray);

frame.getContentPane().add(bank);

frame.setSize(800,640);

frame.setVisible(true);

class ExitingFrame extends WindowAdapter

{

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

}

frame.addWindowListener(new ExitingFrame());

}

}

The Bank class itself is not shown in full here, but can be downloaded from the 
website. We should point out that pressing the ‘Save and quit’ button invokes a
method called saveRecords that writes the records to a file in the current directory;
a method called readRecords reads this file when the class is first instantiated. One
further point is worth noting. You have already seen that we are making use of 
the java Date class. You will see from Figure 14.1 that we do not ask the user to enter
the date of a transaction – instead we make use of the fact that the Date class has an
empty constructor that picks up the current date, and, as you will see we use this in
the event-handler for the ‘Make transaction’ button.

Here we look at one of the event-handlers, and show how the testing process was
greatly facilitated by the fact that we used a formal approach in developing the
AccountSys class. The other event-handlers are similar and do not require further
explanation.



Below is the event-handler for the addButton:
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if(e.getSource() �� addButton)

{

String numberEntered � numberField.getText();

String nameEntered � nameField.getText();

String addressEntered � addressField.getText();

String limitEntered � limitField.getText();

// if a field is left blank

if(numberEntered.length() �� 0 || nameEntered.length() �� 0

|| addressEntered.length() �� 0 || limitEntered.length() �� 0)

{

JOptionPane.showMessageDialog(this,”All fields must be entered”,

null,JOptionPane.ERROR_MESSAGE);

}

else

{

try

{

// if the account number entered is not precisely 8 characters in length

Figure 14.1 The graphical user interface for the AccountSys class
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if(numberEntered.length() !� 8)

{

JOptionPane.showMessageDialog(this,”Account number must be exactly 8 characters”,

null,JOptionPane.ERROR_MESSAGE);

}

// if the account number entered isalready exists

else if(list.contains(new AccNum(numberEntered)))

{

JOptionPane.showMessageDialog(this,”Account number already exists”,

null,JOptionPane.ERROR_MESSAGE);

}

// if the overdraft limit entered is negative

else if(Double.parseDouble(limitEntered) � 0)

{

JOptionPane.showMessageDialog(this,”Overdraft limit cannot be negative”,

null,JOptionPane.ERROR_MESSAGE);

}

else

{

displayArea.setText(“”);

// add the new account

list.addAccount(new AccNum(numberEntered),

new Details(nameEntered, addressEntered),

Double.parseDouble(limitEntered));

numberField.setText(“”);

nameField.setText(“”);

addressField.setText(“”);

limitField.setText(“”);

JOptionPane.showMessageDialog(this,”Account successfully added”,

null,JOptionPane.INFORMATION_MESSAGE);

}

}

catch(VDMException ex)

{

/* if a VDMException is thrown, print the stack trace and signal a system error -

ideally, this will occur only during testing */

ex.printStackTrace();

JOptionPane.showMessageDialog(this,”System error”,null,JOptionPane.ERROR_MESSAGE);

}

catch(NumberFormatException ex)

{

JOptionPane.showMessageDialog(this,”Invalid amount”,null,JOptionPane.ERROR_MESSAGE);

}

}

}

This implementation brings out some important issues. You will see that after
checking that all relevant fields have been entered, a try…catch block is introduced
to trap any VDMExceptions. Here a number of checks are made. The first of these
ensures that the account number is precisely eight characters long. If this were not the
case, then the invariant of AccNum would be violated. If the user enters an invalid
number, a pop-up message appears as shown in Figure 14.2.



What is interesting here, however, is the way in which the formal development
helps us. What might have happened if we had neglected to validate the account 
number in this way? You can see from the code that the throwing of any
VDMException will result in a pop-up menu telling us that there has been a system
error; clearly this is something we do not wish to happen when the application is even-
tually delivered to the user – but it is extremely helpful to us when we are implement-
ing and testing our application. We can demonstrate this by taking out the lines of
code that check the number of characters entered. The result is shown in Figure 14.3.

You can see from the code that we have also arranged for the stack trace to be
printed when an exception is thrown in this way. As you can see from Figure 14.4, the
stack trace shows that there has been an invariant violation, and allows us to follow
the error to its source.

A similar situation occurs if a precondition is not met. Figure 14.5 shows the stack
trace produced as a result of removing the lines of code that check that an account
number does not already exist.

You will recall that it is the responsibility of a calling operation to ensure that it
meets the precondition of the operation that is being called. This is illustrated nicely
by the above example – if the operation is coded correctly, then any attempt to call the
operation with an invalid account number will result in a pop-up message advising of
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Figure 14.2 An invalid account number has been entered
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Figure 14.3 A coding error has caused a VDMException to be thrown

Figure 14.4 The stack trace produced as a result of throwing a VDMException – in
this case an invariant has been violated



the problem. If the implementer had forgotten to do this, however, and the precondi-
tion is not met then an exception is raised. It should be apparent from this that the
testing process is greatly enhanced by having such built-in checks that result from
formal development.

14.4 Concluding Remarks
The case study demonstrates many of the benefits that can be gained from a formal
approach to software development. It illustrates the way in which a formal specifica-
tion allows a greater degree of precision when recording software requirements than
does an informal specification. It shows how ambiguity is removed by recording 
pre- and postcondition assertions, and how important integrity checks can be
recorded in state and type invariants. Often, it is the rigour required in the production
of a formal specification that uncovers potential ambiguities and resolves them.

The lightweight formal method for program development that we have 
propounded in this book, allows these integrity checks to be monitored during run-
time and enhances the integrity of the final system. The utility classes that we have
provided, along with the accompanying guidelines for program implementation, also
make implementation a much more straightforward task. The extra time spent in 
producing a formal specification is therefore amply rewarded by a shorter develop-
ment time.
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Figure 14.5 The stack trace produced as a result of throwing a VDMException – in
this case the precondition of an operation has not been met

1. Download and implement the classes that make up the bank application.
2. Implement the changes that you made to the specification in the exercises from the 

previous chapter.
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integrity levels 2
inv (invariant) 33–4

implementing in Java 49–50
InvariantCheck interface 50
invTest method 52, 54

Java 45–6
Java Virtual Machine (JVM) 45

Larch 8
lazy evaluation 51–2
len 112, 126–7
let…in clause 148–9, 173
lightweight formal methods 8–10
logic

predicate 20–2
propositional 11–20
three-valued 18–20

logical connectives 12–18
logical equivalence (≡) 16–17
logical operators

representation in Java 50–1, 52–3
see also logical connectives

map
application 177, 192
declaring 177

domain (dom) 176, 192
domain deletion (�) 177, 192
domain restriction (�) 177, 192
empty 176, 191
implementing in Java 189–93
override (†) 176, 192
range (rng) 176, 192
range deletion (�) 177, 192
range restriction (�) 177, 192
union (�) 176, 192
VDM-SL type 175–6

Maplet 175
Maplet class 190–1
methods 4
model-based formal methods 7–8

natural number
representing in Java 47
VDM-SL type (�) 26
VDM-SL type – excluding zero (�1) 26

negation (¬) 15, 20
nil 35

representing in Java 67–8
not, see negation

Object class 58
object-orientated development 3–4
operation 27–31

external clause 28
header 28
postcondition 28–29
precondition 28–30

or, see disjunction

postcondition 28–9
postTest method 52, 170–1
precondition 28–30
predicate 21
preTest method 52
printing the stack trace 234–6
proposition 11
PVS 8

quantifiers
existential (∃) 22
implementing in Java 52
unique existential (∃!) 22
universal (∀) 22

quote type 36

rd 28
real number

representing in Java 47
VDM-SL type (�) 26

recursive function 32–3, 227–8
risk 1–3
rng 176, 192
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safety-critical software 2
sequence

comprehension 113–14, 128
concatenation (^) 112, 126–7
declaring 114
elements (elems) 112, 126–7
empty 111, 126
head (hd) 112, 127
implementing in Java 125–8
indices (inds) 113, 127
length (len) 112, 126–7
override 112–13, 126–7
subsequence 113, 127
tail (tl) 112, 127
VDM-SL type 111–12

set
cardinality (card) 81, 97–8
comprehension 77, 98–101
declaring 75–6
difference (\) 79, 97–8
empty 77, 96
finite and infinite 78
implementing in Java 93–101
intersection (∩) 78–9, 97–8
membership (∈) 21, 97–8
proper subset (�) 80, 97–8
singleton 79, 96
subrange 76–7, 97–8
subset (�) 80, 97–8
union (∪) 78, 97–8
VDM-SL type 75–8

signature 31
software

critical 2
embedded 1
failure 2–3

specification 3–6
specifications

AccountSys 205–18
Airport 86–9
Airport2 116–21
DiskScanner 138–41
IncubatorController 35–43
IncubatorMonitor 26–35

PatientRegister 81–6
ProcessManagement 141–9
RobotMonitor 181–6
SecuritySys 178–81
Stack 114–16

state
definition 26–7
initialization (init) 34
invariant (inv) 33–4

tautology 17–18
testing 3, 58–63
tl 112–27
try…catch 56, 60–1
TOKEN

implementing in Java 101–2
VDM-SL type 82

truth table 12
types clause 34–5, 36

UML 3–4
union of quote types 36

validation 58
values clause 31

implementing in Java 49
VDM class 52–3
VDMException class 54
VDMMap class 190–3
VDMSequence class 125–8
VDMSet class 95–101
VDMToken class 101–2
Vector class 93–5
verification 58
Vienna Development Method (VDM) 8

specification language (VDM-SL) 25

wr 28

xor, see exclusive or

Z method 8
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